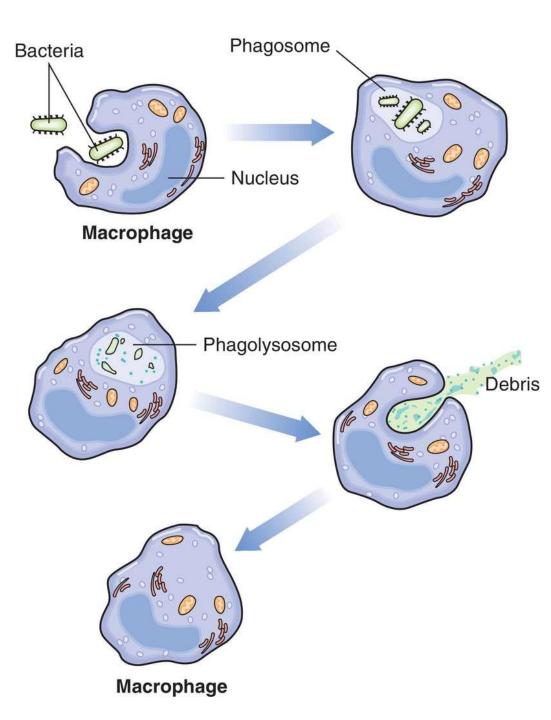
Autophagy and Diseases (Cancer) The Role of GABARAP Gene in Cancer

By: Dr. Firas Subhi Saleh

Cancer Research Department

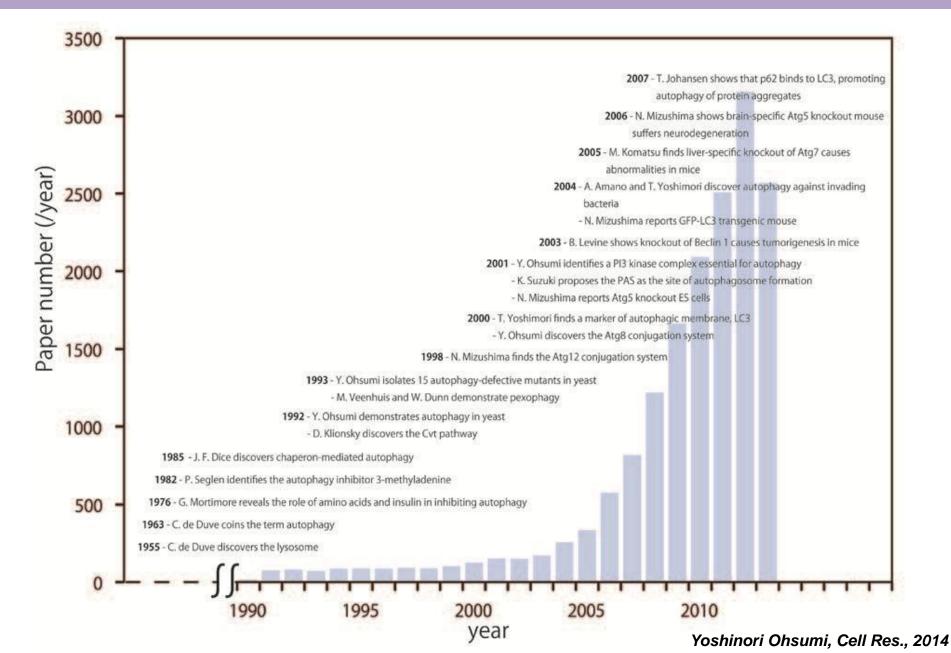

Iraqi Centre for Cancer and Medical Genetics Research (ICCMGR)

Mustansiriyah University

1. Dec. 2016

Phagocytosis

What is Autophagy?


"Self-eating"

From the Greek words, auto "self" and phagein "to eat"

Catabolic process through which the cell recycles its own constituents.

Pathway that lead to the elimination of cytoplasmic components by delivering them into lysosomes.

Chronology

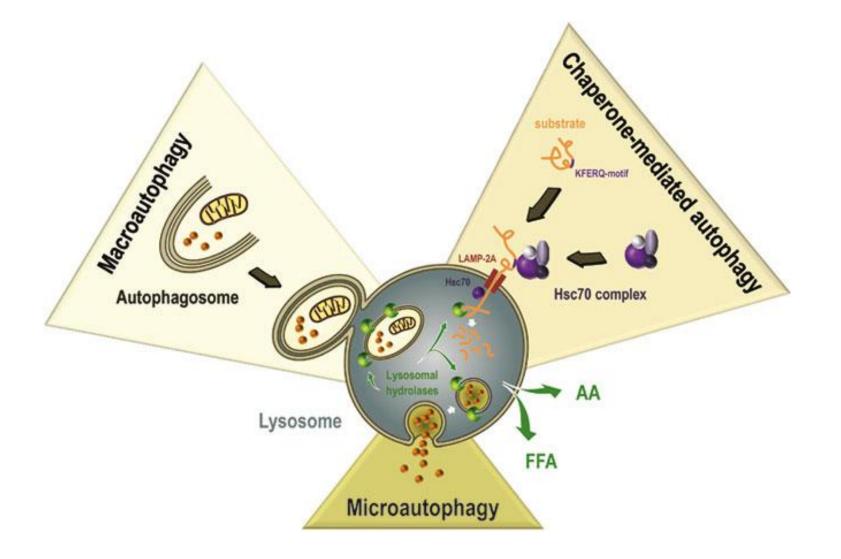
The Nobel Assembly at Karolinska Institutet has today decided to award the

2016 NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE

Yoshinori Ohsumi

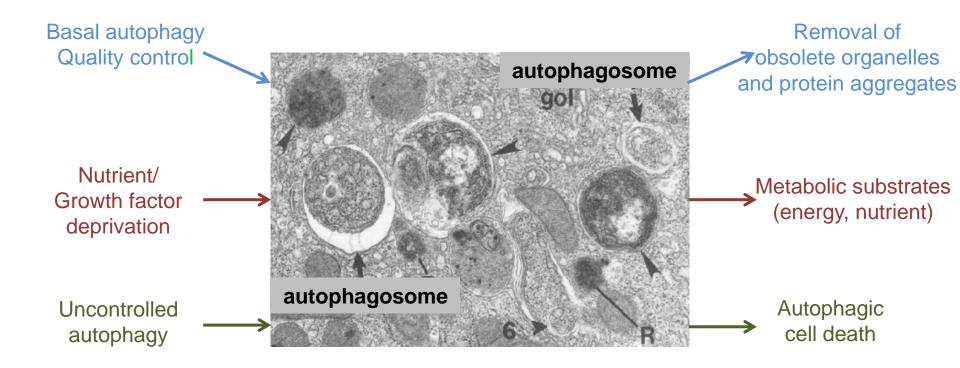
18:00 The

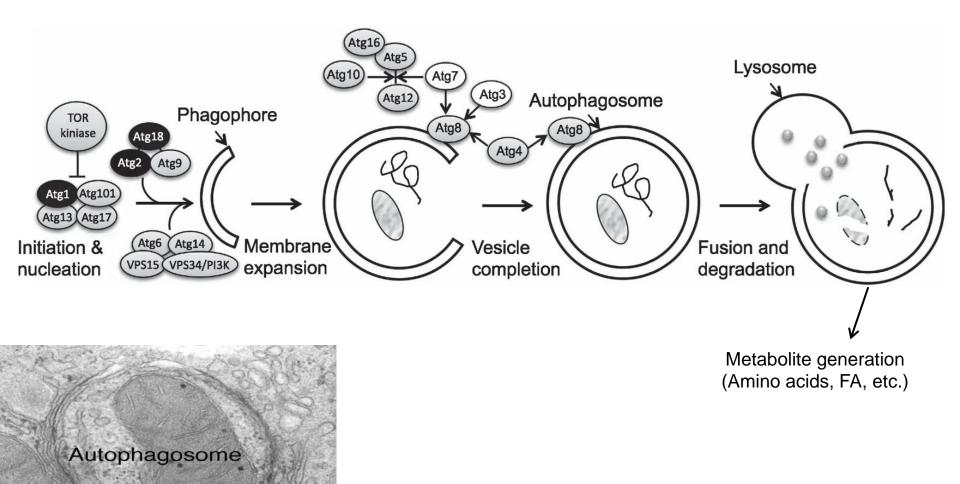
675


Nobelprize.org

20

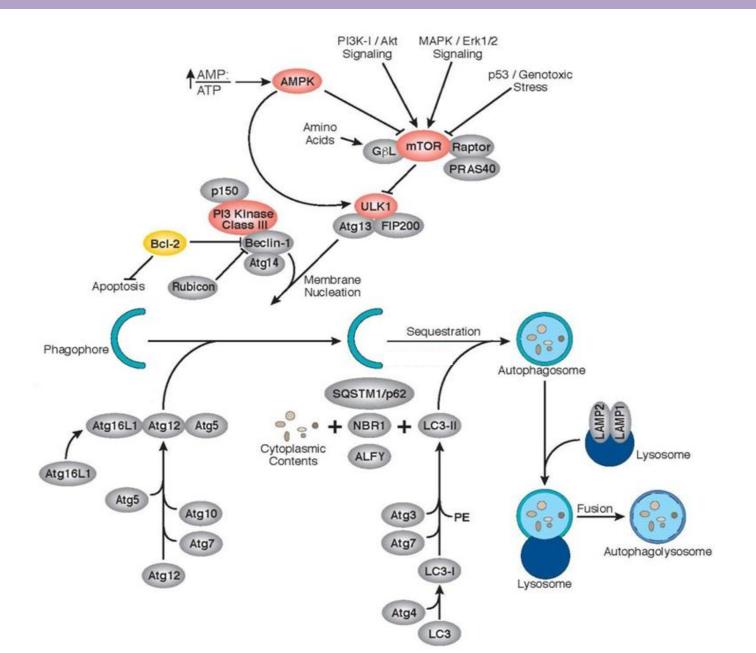
00


Types of Autophagy

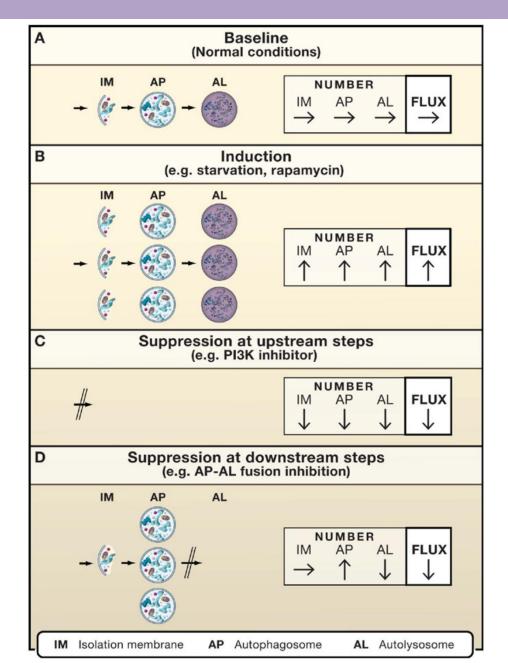

Wirawan et al., Cell Res., 2012

Multiple Functions of Autophagy

- Occurs in all eukaryotic cells
- Bulk degradative process that ends in lysosomes
- Degradation of intracellular components

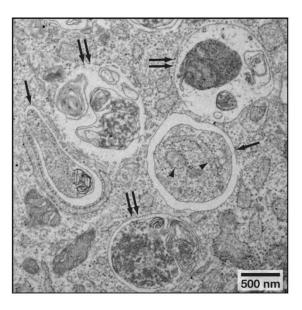


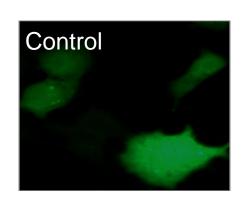
Mechanism of Autophagy



Phagophore

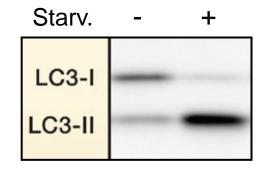
Autophagy Signalling Pathway

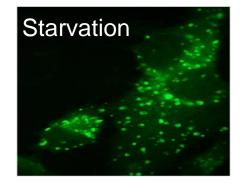

Dynamic regulation of autophagy

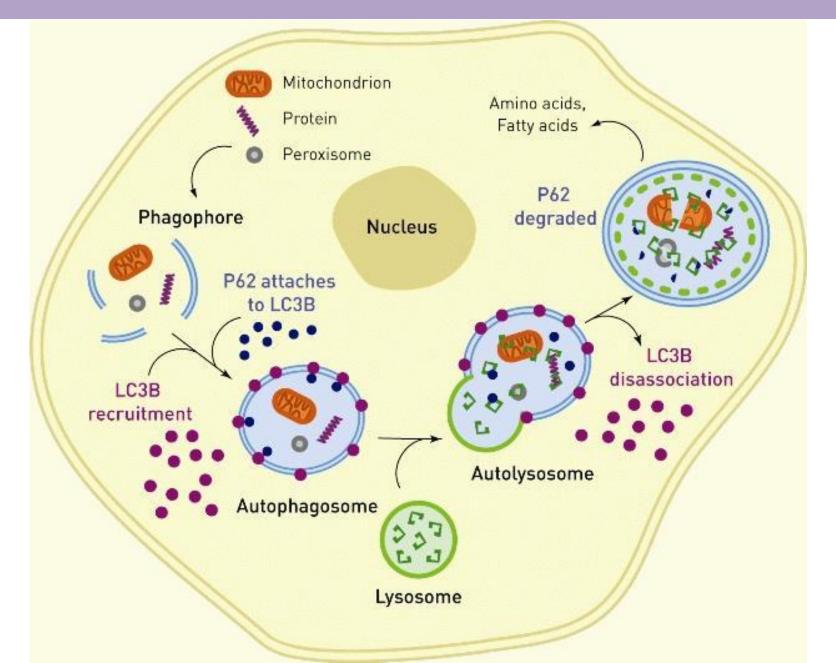


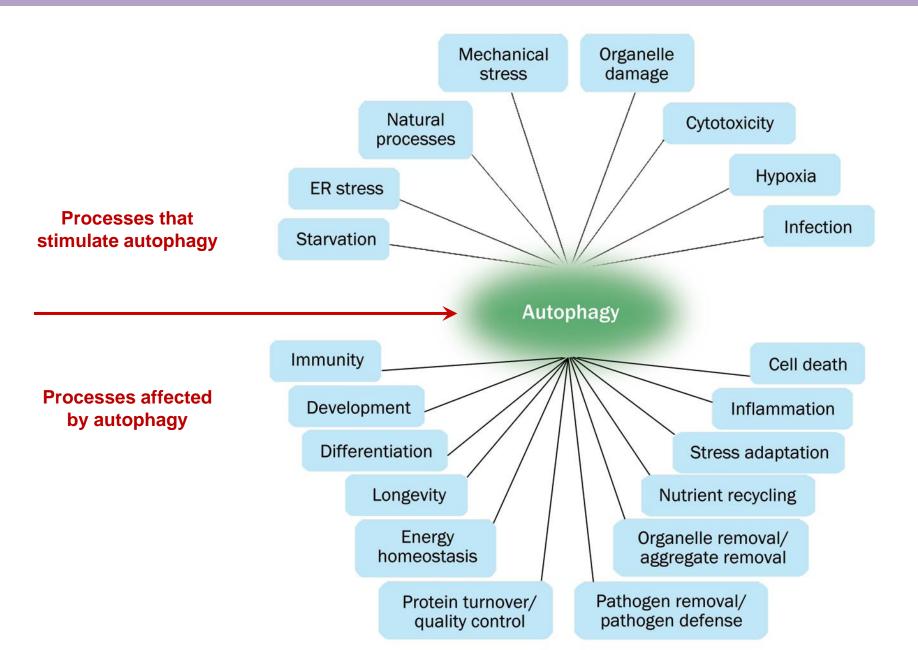
Mizushima et al, Cell, 2010

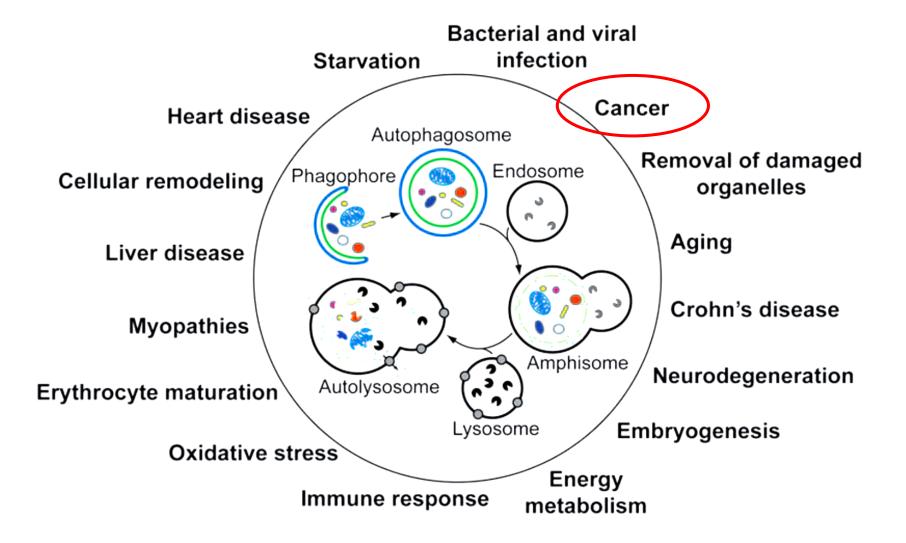
How can We Monitor Autophagy?


<u>EM</u>




IF LC3

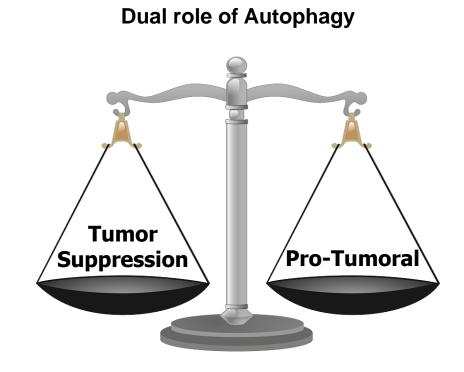



How can We Monitor Autophagy?

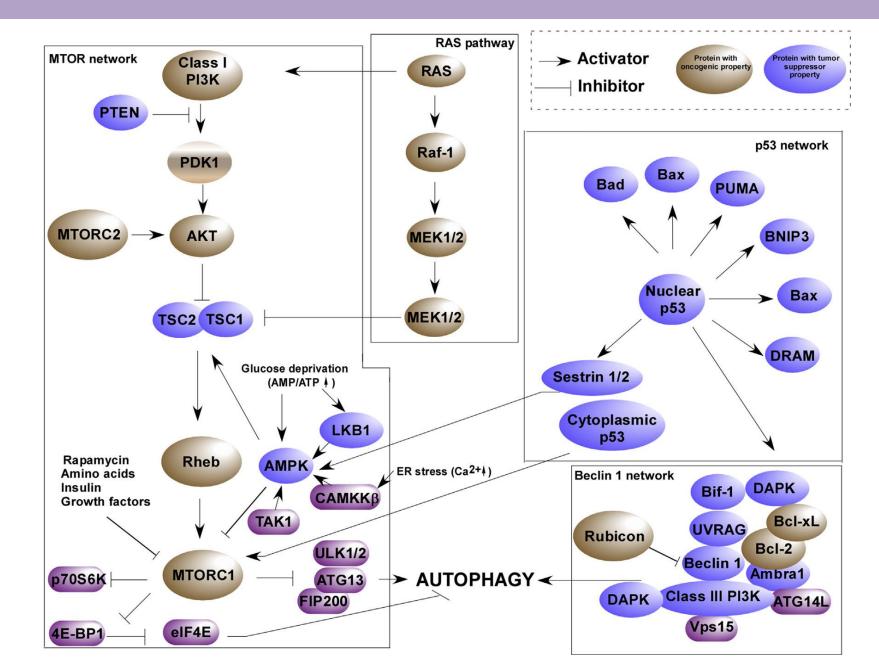
Induction of Autophagy

Autophagy and Diseases

Klionsky DJ, Dev Cell. 2010


Autophagy and Cancer

The connections between autophagy and cancer occur at two aspects:


First at the level of tumor initiation and progression, Second during cancer treatment.

Autophagy in Tumor Initiation and Progression

The role of autophagy in cancer is complex and likely tissue and genetic context-dependent.

Autophagy in Tumor Initiation and Progression

Autophagy and Cancer

Mouse models for autophagy-deficient gene:

- Beclin1: tumor suppression function
- > ATG5, ATG7, and FIP200: No malignant tumor development *in vivo*.
- ➤ GABARAP: less tumor formation after carcinogen treatment

S NCBI Resources	🗹 How To 🗹				<u>Sign i</u>
Publiced.gov US National Library of Medicine National institutes of Health	PubMed	•	Salah FS and GABARAP Create RSS Create alert Advanced	🛛 Searc	D
Format: Abstract +			Send to -	Full text links	
	on in mice lac	king	oness. GABARAP, an Atg8/LC3 family member implicated in autophagy, is kine secretion and cell death.	Cell Death & Disease	PMC Full te
Salah FS ^{1,2} , Ebbinghaus M Petersen I ¹ .	³ , <u>Muley VY</u> ^{4,3} , <u>Zho</u>	<u>u Z</u> e, <u>A</u>	I-Saadi KR², Pacyna-Gengelbach M*, O'Sullivan GA ^s , Betz H ^{s.s} , König R ^{4,s} , Wang ZQ ^{s.10} , Bräuer R*,	Save items	
Author information				Add to Favorites	5 *

Similar articles

Review LC3/GABARAP family proteins autophagy-(un)related functions. [FASE]

Interaction of Bcl-2 with the autophagy-r GABAA receptor-associated [[J Biol Ch

Review LC3 conjugation system in mar autophagy. [Int J Biochem Cell E

Suppression of autophagy by FIP200 de inhibits mammary tumorigenes [Genes I

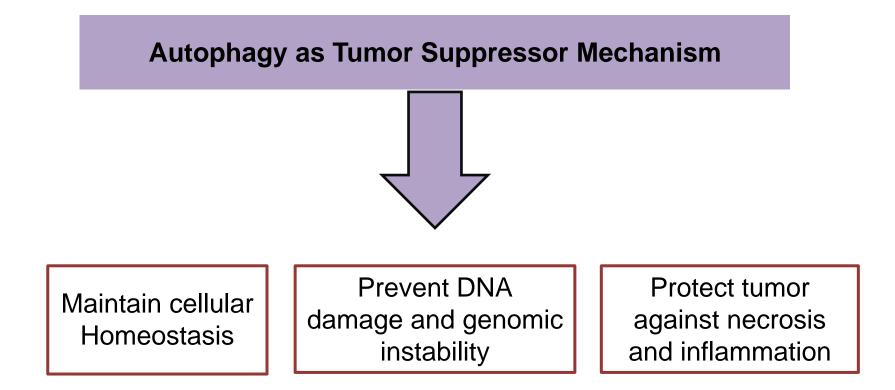
Autophagy inhibition uncovers the neuro action of the antipsychotic drug [Autophs

See

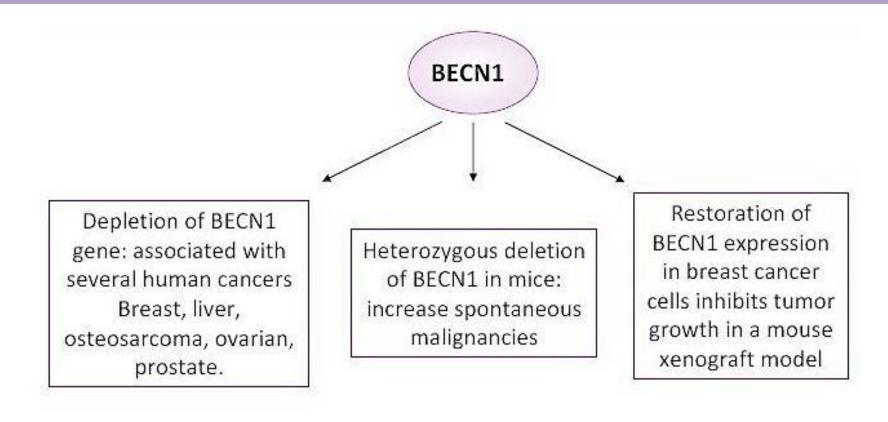
Related information Articles frequently viewed together MedGen References for this PMC Article

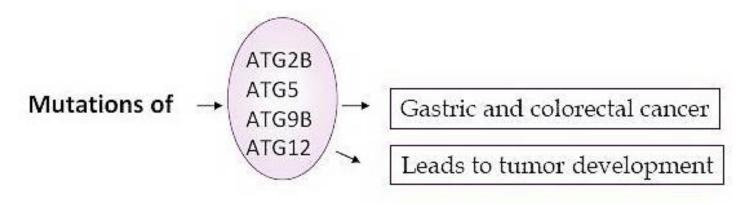
References for this PIVIC A

Free in PMC

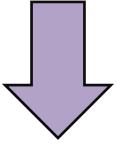

Conrob dotaile

Abstract


GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.


PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddls.2016.93 [PubMed - In process] Free PMC Article

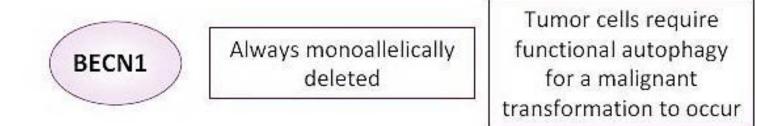
Autophagy as Tumor Suppressor Mechanism

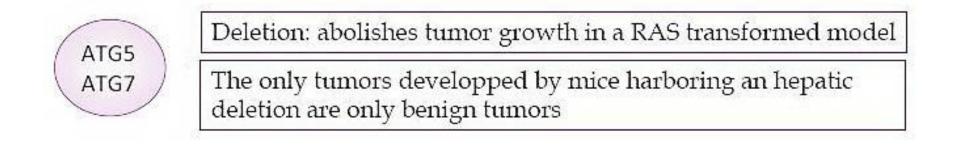

Autophagy as Tumor Suppressor Mechanism

Molecular Mechanisms

protects cells against DNA damage and genomic instability by removing from the cytoplasm damaged organelles and proteins (major sources of ROS) may prevent tumor development by regulating the cellular level of p62 Autophagy may restrict the cell proliferation of transformed cells by activating oncogene induced senescence Could act as tumor suppressor as a non-autonomous mechanism by preventing necrosis and subsequent

inflammation


Autophagy as Tumor Promoting Mechanism



Allow tumor cells to survive under stressful conditions Sustain the deep metabolic reorganization that cancer cells encounter after oncogenic transformation Support tumor development by maintaining the survival and self renewal of cancer stem cells

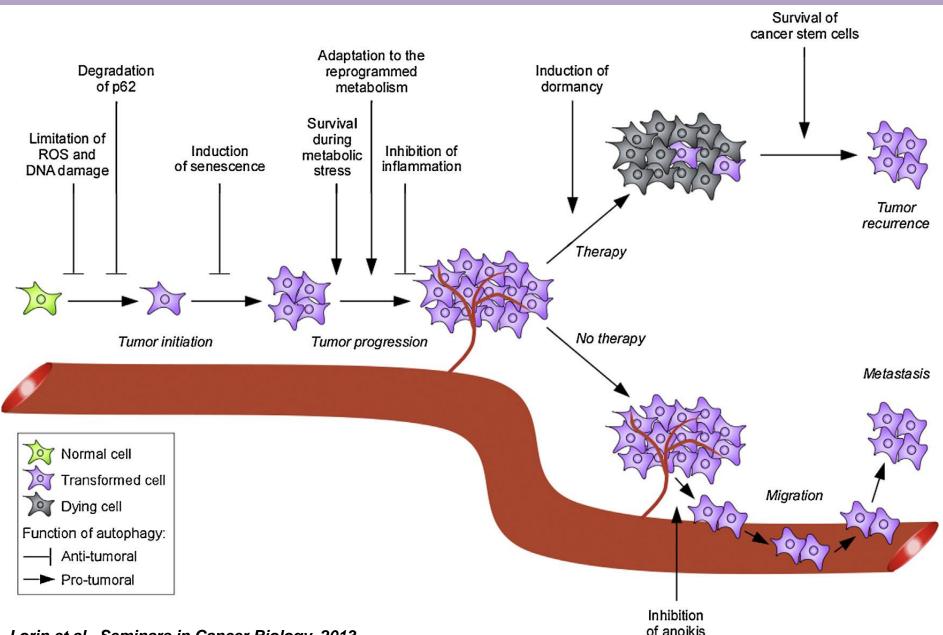
Autophagy as Tumor Promoting Mechanism

Autophagy is necessary for tumor progression

Autophagy as Tumor Promoting Mechanism

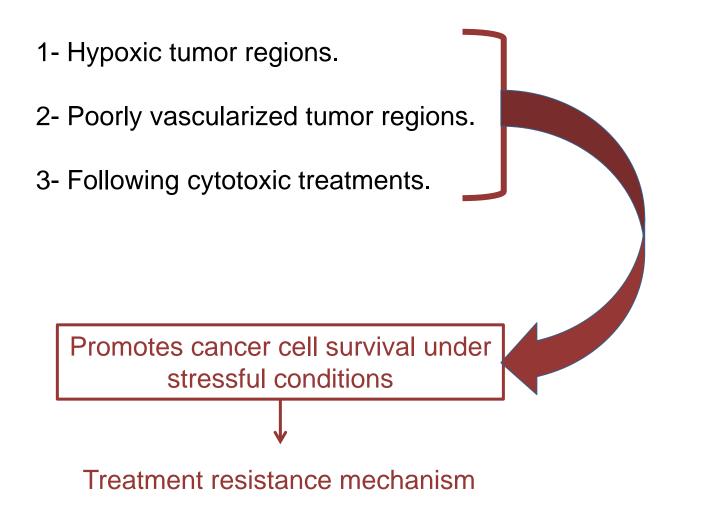
- 1- Autophagy allow cancer cell to survive despite metabolic stress
- In solid tumors, autophagy is localized in hypoxic regions of the tumors, its inhibition induce cell death.
- Due to increased cell proliferation, cancer cells have a high demand for nutrient and oxygen.
- 2- Autophagy participate in the tumor cell dormancy
- some cells enter into a senescent/dormant state (re-enter the cell cycle after a variable period of senescence).
- tumor recurrence.

3- Autophagy promotes the tumor cell dissemination and metastasis by protecting them from anoikis.

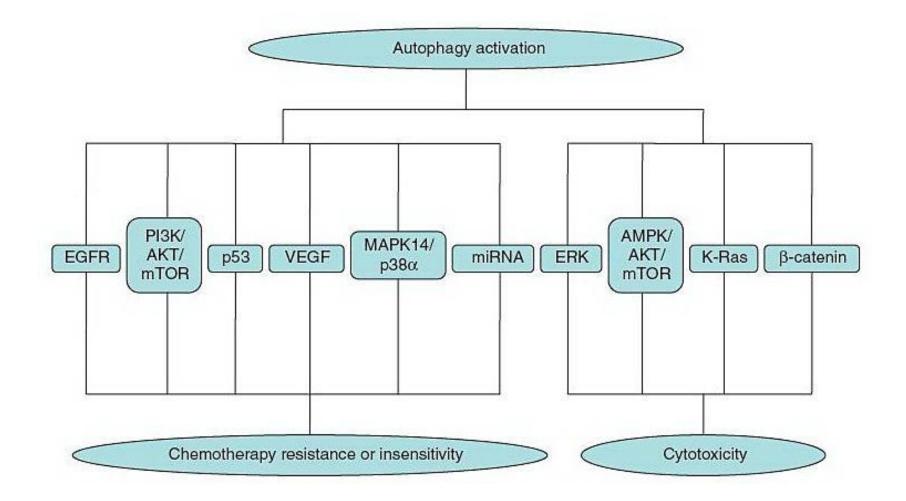

- 4- Metabolic reprogramming (warburg effect)
- inhibition of autophagy reduces glucose metabolism.
- mitochondrial metabolism: autophagy provide substrate for the TCA cycle (amino acids, lipids, sugars).
- 5- Cancer stem cells maintenance.

Autophagy and Cancer

Autophagy gene profile in human tumors


Human cancer types	Genetic autophagy modulation		
	BECN1 gene monoallelically deleted in up to 50% of cases.		
Breast	Loss of heterozygosis and aberrant methylation of promoter and the intron 2 in		
DiedSt	breast tumor tissues		
	Association between BECN1 loss and HER2/NEU amplification		
Colorectal	Frameshift mutations of ATG2B, ATG5 and ATG9B detected in a subset of		
	MSI-H cases		
	Frameshift mutation of UVRAG detected in 9.4% of MSI-H cases		
Gastric	Frameshift mutations of ATG2B, ATG5 and ATG9B detected in a subset of		
	MSI-H cases		
Head and neck	ND		
Liver	Reduction of Beclin 1 mRNA expression observed in 45.5% of HCC tissues		
Leukemia	RAB7A gene rearrangement and deletion		
	Constitutive formation of autophagosomes detected in invasive and metastatic		
Melanoma	melanoma cells		
Melanoma	Melanoma cells actively undergoing autophagy		
	Downregulation of Beclin 1 and LC3 during disease progression		
Osteosarcoma	Weaker Beclin 1 IHC staining in tumors than in normal bones		
Ovarian	BECN1 gene monoallelically deleted in up to 75% of case		
Pancreatic	Positive LC3 IHC staining in 43.7% of cases		
Prostate	BECN1 gene monoallelically deleted in up to 40% of cases		

Suppressing and Promoting Roles of Autophagy during Tumorigenesis


Lorin et al., Seminars in Cancer Biology, 2013

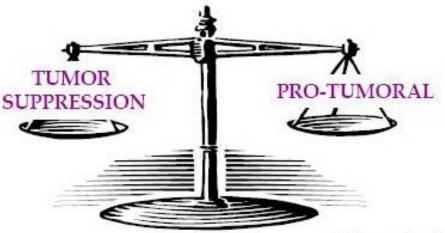
Autophagy induction have been found to spatially localize to:

Therapeutic Agent	Model	Autophagy Inhibition	Response
Temozolomide	Human malignant glioma cell lines	3-Methyladenine	Decreased cytotoxicity
		Bafilomycin A	Increased cytotoxicity
Cyclophosphamide	Murine Myc-induced lymphoma cancer	Chloroquine	Increased antitumor response
5-Fluorouracil	Human colon cancer cell lines	3-Methyladenine	Increased apoptosis
5-Fluorouracil	Human colon cancer cell lines and xenograft		Increased cytotoxicity
5-Fluorouracil	Human colon cancer cell line (HT29)	Chloroquine	Increased cytotoxicity
5-Fluorouracil	Human hepatic carcinoma cell lines	3-Methyladenine	Increased apoptosis
5-Fluorouracil	Murine colon cancer cell line and tumor xenograft	Chloroquine	Increased apoptosis
5-Fluorouracil	Human NSCLC cell line (A549)	3-Methyladenine	Increased apoptosis
Cisplatin	Esophageal SSC cell line (EC9706)	3-Methyladenine	Increased apoptosis
Cisplatin	Human cholangiocarcinoma cell lines	3-Methyladenine Wortmannin	Increased cytotoxicity
Cisplatin	Human cervical cancer cell line (HeLa)	3-Methyladenine Chloroquine	Increased apoptosis
Cisplatin	Human hepatic carcinoma cell lines	3-Methyladenine	Increased apoptosis
Cisplatin	Laryngeal cancer cells (Hep-2)	3-Methyladenine	Increased apoptosis
Cisplatin	Human NSLC cell line (A549)	3-Methyladenine	Increased apoptosis
Oxaliplatin	Human colon cancer cell lines and xenograft	Chloroquine	Increased cytotoxicity and tumor control
Paclitaxel	Human NSLC cell line (A549)	3-Methyladenine	Increased apoptosis
Etoposide	Human hepatocellular carcinoma cell line (HepG2)	3-Methyladenine	Increased cytotoxicity
Doxorubicin	Human multiple myeloma cell lines, patient- derived multiple myeloma cells, human plasmacytoma xenograft	Hydroxychloroquine 3-Methyladenine	Increased apoptosis
Epirubicin	Human breast cancer cell line (MCF7)	Bafilomycin A	Increased apoptosis
Melphalan	Human multiple myeloma cell lines, patient- derived multiple myeloma cells, human plasmacytoma xenograft	Hydroxychloroquine 3-Methyladenine	Increased apoptosis
Topotecan	Human NSLC cell line (A549)	Chloroquine	Increased cytotoxicity
Camptothecin	Human breast cancer cell lines	Wortmannin 3-Methlyadenine Bafilomycin A	Increased apoptosis in selective cell lines

Therapeutic Agent	Model	Autophagy Inhibition	Response
Imatinib	Human glioma cell lines	3-Methyladenine Bafilomycin A	Decreased cytotoxicity Increased cytotoxicity
Imatinib	Human Philadelphia chromosome positive CML cells	Chloroquine	Increased cytotoxicity
HDACi/vorinostat	Human colon cancer cells and xenografts	Chloroquine	Increased cytotoxicity Decreased growth
HDACi/panobinostat	Human triple negative breast cancer cells and xenografts	Chloroquine	Increased cytotoxicity Decreased tumor growth
HDACi/SAHA	Human CML cell lines and primary CML cells	Chloroquine	Increased cytotoxicity
HDACi/valproic acid	Human t(8;21) acute myeloid leukemia cells	Chloroquine	Increased cytotoxicity
HSP90i/DMAG	Human multiple myeloma cell lines	3-Methyladenine	Increased cytotoxicity
Erlotinib	Human glioblastoma cell lines	Chloroquine	Increased cytotoxicity
Sorafenib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine 3-Methyladenine	Increased cytotoxicity and decreased tumor growth
Sorafenib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine	Increased cytotoxicity and decreased tumor growth
Sunitinib	Rat PC12 cells	Ammonium chloride	Increased cytotoxicity
AKTi/AZD5363	Human prostate cancer cell lines and xenograft	3-Methyladenine Chloroquine Bafilomycin A	Increased cytotoxicity and decreased tumor growth
METi/PHA665752 and EMD1214063	Human gastric adenocarcinoma cell line	3-Methyladenine	Increased cytotoxicity
Vandetanib	Human glioblastoma cell lines and xenograft	3-Methyladenine Chloroquine	Increased cytotoxicity and decreased tumor growth
Bevacizumab	Human hepatocellular carcinoma xenografts	Chloroquine	Decreased tumor growth
Bortezomib	Human multiple myeloma cell line (U266)	3-Methyladenine Bafilomycin A	Decreased cytotoxicity Increased cytotoxicity
Bortezomib	Human hepatocellular carcinoma cell lines and xenografts	Chloroquine	Increased apoptosis

ClinicalTrials.gov

 E^{D}


Search for studies:

A service of the U.S. National Institutes of Health

Example: "Heart attack" AND "Los Angeles"

Search Glossary

Advanced Search | Help | Studies by Topic | Now Available: Final Rule for FDAAA 801 and NIH Policy on Clinical Trial Reporting Find Studies About Clinical Studies Submit Studies About This Site Resources Home > Find Studies > Search Results Text Size 💌 49 studies found for: autophagy and cancer Woolity this search | How to Use Search Results By Topic On Map Search Details List + Show Display Options T. Download Subscribe to RSS Only show open studies Status Study Rank Autophagy Inhibition Using Hydrochloroguine in Breast Cancer Patients 1 Unknown[†] Condition: Breast Cancer Intervention: Drug: Hydrochloroquine 2 Recruiting Modulation of Autophagy in Patients With Advanced/Recurrent Non-small Cell Lung Cancer - Phase II Conditions: Non-small Cell Lung Cancer; Advanced Non-small Cell Lung Cancer; Recurrent Nonsmall Cell Lung Cancer Interventions: Drug: Paclitaxel; Drug: Carboplatin; Drug: Hydroxychloroquine; Drug: Bevacizumab 3 Active, not Hydroxychloroquine in Blocking Autophagy in Patients With Prostate Cancer Undergoing Surgery or Active recruiting Surveillance Condition: Prostate Carcinoma Interventions: Drug: Hydroxychloroquine; Other: Laboratory Biomarker Analysis Completed Chloroquine as an Anti-Autophagy Drug in Stage IV Small Cell Lung Cancer (SCLC) Patients 4 Condition: Small Cell Lung Cancer Intervention: Drug: Chloroguine, A-CQ 100

Cell growth control Quality control Limitation of ROS Limitation of genomic instability Autophagic cell death Antitumoral immunity

Senescence

Inhibition of chronic inflammation

Basal autophagy?

Cell survival

⇒ oxygen and nutrients

deprivation

⇒ chemotherapy

Chemoresistance

Prevention of apoptosis

Provides nutrient essential for

rapid growth

Dormancy

Cancer stem cell survival

Induced autophagy ?

www.nature.com/cddis

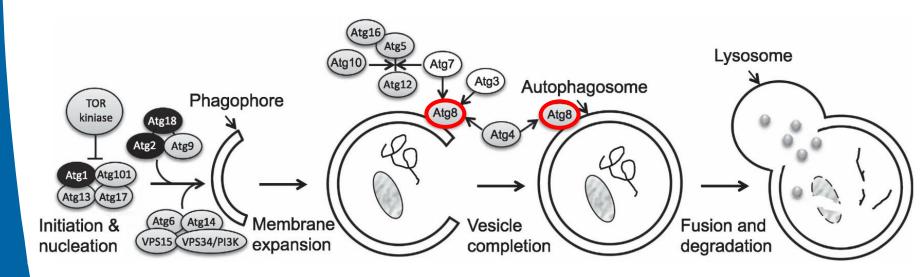
Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death

FS Salah^{1,2}, M Ebbinghaus³, VY Muley^{4,5}, Z Zhou⁶, KRD Al-Saadi², M Pacyna-Gengelbach⁷, GA O'Sullivan⁸, H Betz^{8,9}, R König^{4,5}, Z-Q Wang^{6,10}, R Bräuer¹ and I Petersen^{*,1}

GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1 β , IL-6, IL-2 and IFN- γ from stimulated macrophages and lymphocytes. In contrast, TGF- β 1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP- deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis *in vivo* by delaying cell death and its associated immune-related response.

Cell Death and Disease (2016) 7, e2205; doi:10.1038/cddis.2016.93; published online 28 April 2016

Universitätsklinikum Jena


Gamma (γ)-aminobutyric acid type A (GABA_A) receptor-associated protein (GABARAP) is an evolutionary highly conserved gene family from yeast to mammals.

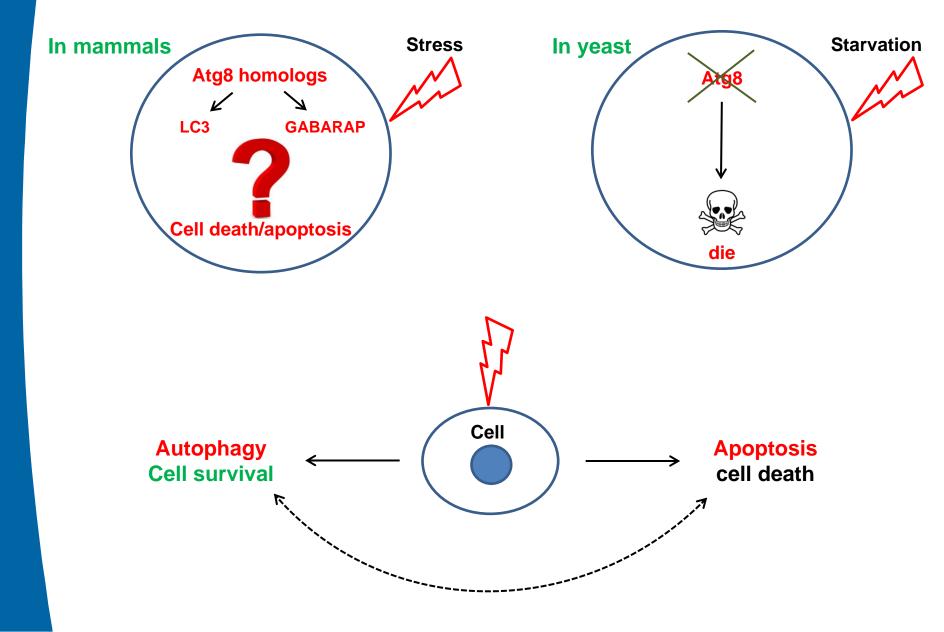
> 100% identity at amino acid level for mammalian forms.

➢ GABARAP regulates the intracellular trafficking of GABA_A receptor, a major inhibitory neurotransmitter in cortical neurons.

> In mammals, there are several Atg8 homologues; grouped into two subfamilies:

- LC3 (microtubule-associated protein-1 light chain 3)
- GABARAP

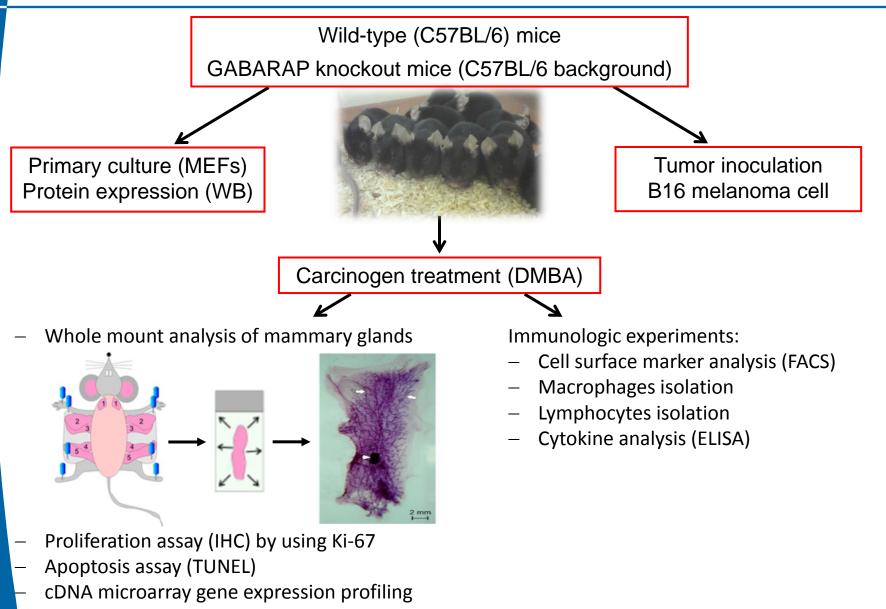
> Neuroblastoma: U GABARAP expression associated with U survival


➢ Breast tumors: ↓ GABARAP expression

> Thyroid tumors: TGABARAP expression in adenomas and thyroid cancer

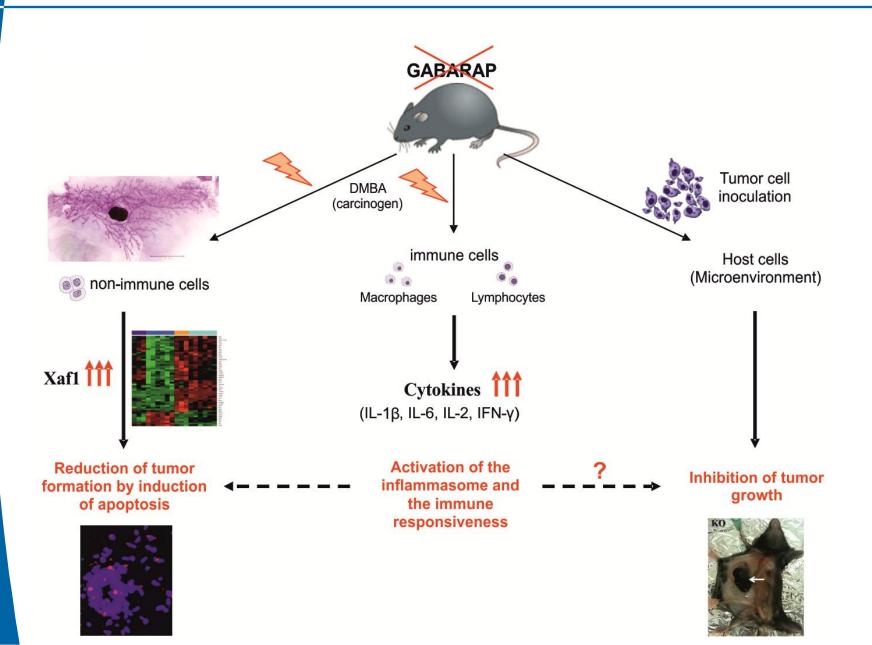
Colorectal tumors: T GABARAP expression associated with a low grade of differentiation and shortened survival

However, the precise role of GABARAP in tumorigenesis is unknown so far


Universitätsklinikum Jena

Explore the role of GABARAP in tumorigenesis by using a knockout mouse model

- > Treatment of GABARAP knockout mice with carcinogens affect tumorigenesis?
- > GABARAP knockout mice influence the growth of inoculated tumor cells?
- > What are the cellular mechanisms being affected by GABARAP deficiency?
 - Apoptosis
 - Immunity


Methods

qRT-PCR

