
Chapter Three 2D Transformation & Viewing

88

Chapter Three

2D Transformation & Viewing

 Introduction To Transformation

 Types of Transformation

 Translation

 Scaling

 Rotation
 Reflection

 Shear

 Matrix Representation of Transformation

 2D Viewing
 Window to Viewport Transformation (Mapping)
 Window to Viewport Transformation N

 Clipping and windowing

Clipping window

Point clipping

Line clipping

The Cohen–Sutherland algorithm

 Intersection points

Chapter Three 2D Transformation & Viewing

89

Chapter Three

2D Transformation & Viewing

3.1 Introducton To Transformation

 One of the most common and important tasks in computer graphics is to transform

(changing) the coordinates (position, orientation, size and shape) of either object

within the graphical scene or the camera that is viewing the scene. It is also frequently

necessary to transform coordinates from one coordinate system to another, (e.g.

world coordinates to viewpoint coordinates to screen coordinates). All of these

transformations can be efficiently and sufficiently handled using some simple matrix

representations, which we will see can be particularly useful for combining multiple

transformations into a single composite transform matrix.

The advantage of used the transformation:
1. Details appear more clearly.
2. Reduces a picture more of if is visible.
3. Change the scale of a symbol.
4. Rotate it through some angle.

3.2 Types of Transformations

 Three basic types of transformations that can perform in two dimensions:

a. Translation (shift OR move).

b. Scaling.

c. Rotation

These basic transformations can also be combined to obtain more complex

transformations.

Some package provides few additional transformations which are useful in certain

application. Two such transformation are Reflection and Shear.

Chapter Three 2D Transformation & Viewing

90

3.2.1 Translation

 Translation is a transformation that moves an object to a different

position on the screen. You can translate a point in 2D by adding translation

coordinate (𝑡𝑥, 𝑡𝑦) to the original coordinate (X, Y) to get the new coordinate

(X’, Y’).Figure 3.1 show the translation and Mathematically this can be

represented as:

X’= X+ 𝑡𝑥 & Y’= Y + 𝑡𝑦

Note: Using coordinate system the translating factor are

 If 𝑡𝑥 >0 then point moves to the right.

If 𝑡𝑥 <0 then point moves to the left.

If 𝑡𝑦 >0 then point moves to the up.

If 𝑡𝑦 <0 then point moves to the down.

Figure 3.1 Translation

Example 1: Translate the point A(10,10), 2 unit in x direction and 1 unit in y direction?

(using mathematical equation)

Solution

 X =10, Y=10,

 𝑡𝑥=2 , 𝑡𝑦=1

 X’= X+ 𝑡𝑥

 =10+2=12

 Y’= Y + 𝑡𝑦

 =10+1=11 , the coordinate after translation is A’(12,11).

Chapter Three 2D Transformation & Viewing

91

Program 1: Matlab program to Translate point.

The Output of program:

 enter x-value 30
 enter y-value 40
 enter Tx: 10
 enter Ty: 15

% 2D-Translation Transformation for One Point

clc;
clear all;
close all
% enter x-value & y-value for point
x=input ('enter x-value ');
y=input ('enter y-value ');
%enter Translating factor tx & ty

tx=input ('enter Tx: ');
ty=input ('enter Ty: ');
x1=x+tx;
y1=y+ty;
axis ([0 100 0 100]);
hold on

plot (x, y,'r*','markersize',10)
plot (x1, y1,'bo','markersize',10)
legend ('Before Translation’, ‘After Translation')

xlabel('X-axis')

ylabel('y-axis')
title('2D-Translation-point')

Chapter Three 2D Transformation & Viewing

92

3.2.2 Scaling

 Scaling is a transformation used to change the size of an object. In the scaling process,

you either expand or compress the dimensions of the object. Scaling can be achieved

by multiplying the original coordinates of the object by the scaling factor (S) to get

the desired result.

Notes:

If the scaling factor (S < 1) ; then we can reduce the size of the object.

If the scaling factor (S > 1) ; then we can increase the size of the object.

If the scaling factor (S = 1) ; then no change.

Let us assume that the original coordinates are (x, y), the scaling factors are (,

), and the produced coordinates are (x’, y’). This can be mathematically represented

as shown below :

 x' = x . Sx & y' = y . Sy

If

If

The scaling process is shown in figure 3.2 as the following.

Figure 3.2 Scaling

Chapter Three 2D Transformation & Viewing

93

Whenever the scaling process is performed there is one point still no change (same

position), this point is called fixed point of the scaling transformation.

There are two types of scaling depending on fixed point:

1. If the fixed point at the origin, then the point (x,y) can be scaled by a scale factor

 in the x-axis and y-axis direction respectively to the new point (,).

x' = x . Sx & y' = y . Sy

Example 2: consider square with left -bottom corner at (2,2) and height-top corner at

(6,6) apply transformation which makes its size half.

Solution

As we want size half so value scale factor are Sx= 0.5, Sy =0.5 ,and the coordinates of

square are A(2,2),B(6,2),C(6,6),D(2,6).

A(2,2) B(6,2) C(6,6) D(2,6)
x' = x . Sx x' = x . Sx x' = x . Sx x' = x . Sx

 = 2*0.5=1 = 6*0.5=3 = 6*0.5=3 = 2*0.5=1

y' = y . Sy y' = y . Sy y' = y . Sy y' = y . Sy

 =2*0.5=1 =2*0.5=1 =6*0.5=3 =6*0.5=3

A'(1,1) B'(3,1) C'(3,3) D'(1,3)

The final coordinates of square are A'(1,1) ,B'(3,1),C'(3,3),D'(1,3).

Chapter Three 2D Transformation & Viewing

94

2. if fixed point is Arbitrary Point

Arbitrary Point is a point that is based a random choice or personal rather than a

reason or system and figure 3.3 show the types of Arbitrary Point.

Figure 3.3 Types of Arbitrary Point

The scaling is performed with respect to any point (xf, yf) as fixed point according to

the three steps:

1. We must first translate the object so that the fixed point is coincide with the origin

as follows: every object point (x, y) is moved to the new position (,) such as:

2. We then scaled these translated points by scale factors and ,so that :

3. Then perform the inverse of the original translation to translate (move) the fixed

point back to its original position.

These three steps can be combined in the following equation that scales a point (xf,

yf).

Chapter Three 2D Transformation & Viewing

95

Example 3: Consider a tringle defined by its three vertices (1,0), (4,0), (3,2) been scaled

3 units to the Sx and 3 units to the Sy with respect to a fixed point (3,0) . Find the new

coordinates of this tringle after Scaling.

Solution :

Sx=3 ; Sy=3 ; xf=3 ; yf=0 ;

P1=(1,0)

1- x’=x-xf ; x’=1-3 ; x’=-2 ; y’=y-yf ; y’=0-0 ; y’=0;

2- x”=x’*Sx ; x”=-2*3 ;x”=-6 ; y”=y’*Sy ; y”=0*3 ; y”=0;

3- x’”=x”+xf ; x’”=-6+3; x’”=-3 ; y’”=y”+yf ;y’”=0+0; y’”=0;

P1=(1,0) P’1(-3,0)

So, the new coordinated of the tringle are :

OR

Solution :

Sx=3 ; Sy=3 ; xf=3 ; yf=0 ;

P1=(1,0)

1- x’”= (x-xf)* Sx +xf ; x’”=(1-3)*3+3; x’”=-3 ; y’”= (y-yf)*Sy+yf ;y’”=(0-0)*3+0; y’”=0;

P1=(1,0) P’1(-3,0)

p(x,y) P’(x’,y’)

(1,0) (-3,0)

(4,0) (6,0)

(3,2) (3,6)

Chapter Three 2D Transformation & Viewing

96

Program 2: Matlab program Scaling Transformation for 2D shape.

% SCALING TRANSFORMATION PROGRAM for 2D-shape

clc; clear all; close all
%Enter number of shape or object vertices

g=input ('enter no. of Shape vertices: ');
%enter SCALING factor sx & sy

sx=input ('enter Sx: ');
sy=input ('enter Sy: ');
% enter x-value & y-value for All Shape vertices

for i=1: g

x(i)=input ('enter x-value: ');
y(i)=input ('enter y-value: ');
x1(i)=x(i)*sx;
y1(i)=y(i)*sy;
end

axis ([0 150 0 200]);
hold on

for i=1: g-1

plot([x(i) x(i+1)], [y(i) y(i+1)], ...
'g^-','LineWidth',3,'markersize',5)
plot([x1(i) x1(i+1)], [y1(i) y1(i+1)], ...
'm*-','LineWidth',3,'markersize',5)
end

plot([x(i+1) x(g-i)], [y(i+1) y(g-i)], ...
'g^-','LineWidth',3,'markersize',5)
plot([x1(i+1) x1(g-i)], [y1(i+1) y1(g-i)], ...
'm*-','LineWidth',3,'markersize',5)

Legend ('Before Scaling’, ‘After Scaling')

xlabel('X-axis')

ylabel('y-axis')

title ('Scaling 2D-Shape')

Chapter Three 2D Transformation & Viewing

97

The Output of program:

enter no. of Shape vertices: 6

enter Sx: 2

enter Sy: 2

enter x-value 10

enter y-value 20

enter x-value 30

enter y-value 20

enter x-value 30

enter y-value 50

enter x-value 25

enter y-value 65

enter x-value 15

enter y-value 65

enter x-value 10

enter y-value 50

3.2.3 Rotation

 Rotation is a transformation that used to reposition the object along the circular path

in the XY -plane. You can rotate an object about the origin or about a pivot point.

It is possible to rotate one or more objects or the entire image about any point in world

space in either negative oriented a (clockwise) where angle is negative oriented or

positive oriented (Anti-clockwise) where angle is positive.

There are two types of Rotate :

1. Rotate about the origin

Any point (x,y) can be represented by its radial distance (r) from the origin and its angle

 of the x-axis.

x= r*cos ()

y=r*sin() …….. (1)

If (x,y) is rotated an angle in the Anti-clockwise direction. The transformed point

() is represented as:

Chapter Three 2D Transformation & Viewing

98

 ……. (2)

The Figure 3.4 show the Rotate about the origin.

Figure 3.4 Rotate about the origin

Using the laws of sines and cosines we get:

 𝒙 = 𝒙 cos(𝜽) - y sin(𝜽)

 𝑦 = 𝒙 sin(𝜽) + 𝑦 cos (𝜽) …………(3)

Equation (3) are the transformation that rotate a point an angle () about the origin

in the Anti-clockwise direction.

To rotate an object each point defining that object must be transformed using

equation (3). The object is then drawn using the list of transformed points.

To rotate in clockwise change the angle 𝜃 to - 𝜃 where:

 cos (-𝜃) = cos (𝜃)

 sin(-𝜃) = -sin (𝜃)

So to rotate a point (x,y) through a clockwise angle 𝜃 about the origin of the

coordinate system we write:

 �̅� = 𝒙 cos(𝜽)+y sin(𝜽)

 �̅� = −𝒙 sin(𝜽) + y cos (𝜽) …………(4)

Chapter Three 2D Transformation & Viewing

99

Equation (4) are the transformation that rotate a point an angle (𝜃) about the origin

in the clockwise direction.

Example 4: Consider a triangle defind by its three vertices (20,0), (60,10),and (40,100)

been rotated 30o counter clockwise. Find the new coordinates of this triangle after

Rotation.

Solution

 𝒙 ̅ = 𝒙𝐜os(𝜽) - y sin(𝜽)

 𝒚 ̅ = 𝐱sin(𝜽) + 𝒚𝐜os(𝜽)

 Cos(30)=0.866; sin(30)=0.5

 p1=(20,0)

x’=20*cos(30)-0*sin(30)

x’=20*0.866 -0= 17.32

y’= 20*sin(30)+0*cos(30)

y’=20*0.5+0 = 10

 p1(20,0) → p’1(17,10)

p(x,y) P’(x’,y’)

(20,0) (17,10)

(60,10) (47,39)

(40,100) (-15,107)

Chapter Three 2D Transformation & Viewing

100

Program 3: Matlab Program to Rotation 2D -Shape (Anti-Clockwise)

% ROTATION TRANSFORMATION (Anti-clockwise) PROGRAM %for 2D-shape

clc;
clear all;
close all
%Enter number of shape or object vertices

g=input ('enter no. of object vertices: ');
%Enter Rotation angle

t=input ('enter the angle: ');
% enter x-value & y-value for All Shape vertices

for i=1: g

 x(i)=input ('enter x-value ');
 y(i)=input ('enter y-value ');
 x1(i)=round ((x(i)) *cos(t)-(y(i)) *sin (t));
 y1(i)=round ((y(i)) *cos(t)+(x(i)) *sin(t));
end

axis ([-100 100 -100 100]);
hold on

for i=1: g-1

 plot([x(i) x(i+1)], [y(i) y(i+1)], ...
 'r*-','linewidth',2,'markersize',5)
 plot([x1(i) x1(i+1)], [y1(i) y1(i+1)], ...
 'g*-','linewidth',2,'markersize',5)
end
plot([x(i+1) x(g-i)], [y(i+1) y(g-i)], ...
 'r*-','linewidth',2,'markersize',5)
plot([x1(i+1) x1(g-i)], [y1(i+1) y1(g-i)], ...
 'g*-','linewidth',2,'markersize',5)

Legend ('Before Rotation', 'After Rotation')

xlabel('X-axis')

ylabel('y-axis')

title ('Rotation 2D-Shape')

Chapter Three 2D Transformation & Viewing

101

The Output of program:

enter no. of object vertices: 4
enter the angle: 45
enter x-value 10
enter y-value 20
enter x-value 30
enter y-value 20
enter x-value 30
enter y-value 50
enter x-value 10
enter y-value 50

2. Rotate about a pivot point

After an object is rotated about a specified pivot point, it is still the same distance

away from the pivot point but its orientation has been changed,Figure 3. 5 Show the

types a pivot point :

Figure 3. 5 the types a pivot point

To rotate an object an angle (𝜃) about a pivot point three steps are required:

1. Translate the pivot point (, 𝑦𝑝) to the origin. Every point (x,y) defining the object

is translated to a new point (𝑥 ̅, 𝑦 ̅) where:

�̅� = 𝑥 − 𝑥𝑝

�̅� = 𝑦 − 𝑦𝑝

 Pivot Point Inside object Pivot Point Outside object

Chapter Three 2D Transformation & Viewing

102

2. Rotate these translated points (𝑥 ̅, 𝑦 ̅) 𝜃 degree about the origin to obtain the new

point (

�̿� = �̅� ∗ cos(𝜃) − �̅� ∗ sin(𝜃)

�̿� = �̅� ∗ cos(𝜃) + �̅� ∗ sin(𝜃)

 Substituting for 𝑥 ̅ and 𝑦 ̅

�̿� = (𝑥 − 𝑥𝑝) ∗ cos(𝜃) − (𝑦 − 𝑦𝑝) ∗ sin(𝜃)

�̿� = (𝑦 − 𝑦𝑝) ∗ cos(𝜃) + (𝑥 − 𝑥𝑝) ∗ sin(𝜃)

3. Translate the center of rotation back to the pivot point (𝑥𝑝 , 𝑦𝑝)

The final equation of rotate object about a pivot point are:

�̿� ̅=(𝑥 − 𝑥𝑝) ∗ cos(𝜃) − (𝑦 − 𝑦𝑝) ∗ sin(𝜃) + 𝑥𝑝

 �̿� ̅=(𝑦 − 𝑦𝑝) ∗ cos(𝜃) + (𝑥 − 𝑥𝑝) ∗ sin(𝜃)+ 𝑦𝑝

Figure 3.6 show rotate about a pivot point.

 Figure 3.6 Rotate about a pivot point

The Figure 3.7 show the three steps of rotate about a pivot point.

Chapter Three 2D Transformation & Viewing

103

Figure 3.7 The Three Steps of Rotate about a pivot point.

Example 5: Consider a triangle defind by its three vertices (20,0), (60,10) and (40,100)

been rotated 30o counterclockwise about a pivot point (15,20). Find the new

coordinates of this triangle after Rotation.

Solution

�̿� ̅=(𝑥 − 𝑥𝑝) ∗ cos(𝜃) − (𝑦 − 𝑦𝑝) ∗ sin(𝜃) + 𝑥𝑝

 �̿� ̅=(𝑦 − 𝑦𝑝) ∗ cos(𝜃) + (𝑥 − 𝑥𝑝) ∗ sin(𝜃)+ 𝑦𝑝

 cos(30)=0.866 , sin(30)=0.5 ;

 xp=15 , yp= 20

 p1=(20,0)

 x’”=(20-15)*0.866-(0-20)*0.5+15=29

 y’”=(0-20)*0.866+(20-15)*0.5+20=5

 p1(20,0) → p’1(29, 5)

p(x,y) p’(x’,y’)

(20,0) (29, 5)

(60,10) (59,34)

(40,100) (-4,102)

) xp,yp (

y

x

Pivot point

Translate

y

x
Rotate

𝜽

𝜽

(xp,yp)

y

x

Pivot point

Translate

Pivot point Pivot point

Chapter Three 2D Transformation & Viewing

104

3.2.4 Reflection

 A reflection is a Transformation that produces a mirror image of an object.

Reflection is a kind of rotation where the angle of rotation is 180 degree,The size of
reflected object is same as the size of original object.Consider a point object O has to
be reflected in a 2D plane.

Let-

 Initial coordinates of the object O = (Xold, Yold)

 New coordinates of the reflected object O after reflection = (Xnew, Ynew)

Types of Reflection:

1. Reflection about the x-axis

2. Reflection about the y-axis

3. Reflection about an axis perpendicular to xy plane and passing through the origin

4. Reflection about line y=x

1. Reflection On X-Axis:

 This reflection is achieved by using the following reflection equations:

Xnew = Xold

Ynew = -Yold

In this transformation value of x will remain same where as the value of y will become
negative. Following figure 3. 8 shows the reflection of the object axis. The object will
lie another side of the x-axis.

Chapter Three 2D Transformation & Viewing

105

Figure 3. 8 Reflection of the object on X-axis

2. Reflection On Y-Axis:

 This reflection is achieved by using the following reflection equations:

Xnew = -Xold

Ynew = Yold

Here the values of x will be reversed, whereas the value of y will remain the same. The
object will lie another side of the y-axis.The following figure 3.9 shows the reflection
about the y-axis

Figure 3.8 the Reflection about the y-axis

Chapter Three 2D Transformation & Viewing

106

3. Reflection about an axis perpendicular to xy plane and passing through origin:
 In this value of x and y both will be reversed. This is also called as half revolution
about the origin. The following figure 3.9 shows the reflection about xy plane.

Figure 3.9 shows the reflection about xy plane.

4. Reflection about line y=x:

 The object may be reflected about line y = x with the help of following
transformation matrix, Figure 3.10 show the reflection about y=x plane.

Figure 3.10 the reflection about y=x plane.

Chapter Three 2D Transformation & Viewing

107

First of all, the object is rotated at 45°. The direction of rotation is clockwise. After it
reflection is done concerning x-axis. The last step is the rotation of y=x back to its
original position that is counterclockwise at 45°.

Example 6:Given a triangle with coordinate points A(3, 4), B(6, 4), C(5, 6). Apply the
reflection on the X axis and obtain the new coordinates of the object.

 Solution:

Applying the reflection equations, we have:

A(3, 4)

Xnew = Xold = 3

Ynew = -Yold = -4

A’(3,-4)

B(6, 4)

Xnew = Xold = 6

Ynew = -Yold = -4

 B’(6,-4)

 C(5, 6)

Xnew = Xold = 5

Ynew = -Yold = -6

C’(5,-6)

Program 7: Matlab program to Reflection Transformation Program For 2d-Shape

% Reflection TRANSFORMATION PROGRAM for 2D-shape

clc; clear all; close all
%Enter number of shape or object vertices

g=input ('enter no. of shape vertices: ');
% enter x-value & y-value for All Shape vertices

for i=1: g

 x(i)=input ('enter x-value:');
 y(i)=input ('enter y-value:');
end

%Reflection Types

disp ('Reflection on x, enter 1');

Chapter Three 2D Transformation & Viewing

108

disp ('Reflection on y, enter 2');
disp ('Through the origin, enter 3');
disp ('Over the line y = x, enter 4');
disp ('Over the line y = -x, enter 5');
b=input ('enter type of Reflection:');
switch b

 case 1

 for i=1: g

 x1(i)=x(i);
 y1(i)=-y(i);
 end

 case 2
 for i=1: g

 x1(i)=-x(i);
 y1(i)=y(i);
 end

 case 3

 for i=1: g

 x1(i)=-x(i);
 y1(i)=-y(i);
 end

 case 4

 for i=1: g

 x1(i)=y(i);
 y1(i)=x(i);
 end

 case 5

 for i=1: g

 x1(i)=-y(i);
 y1(i)=-x(i);
 end

end
axis ([-100 130 -100 130]);
hold on

for i=1: g-1

 plot([x(i) x(i+1)], [y(i) y(i+1)], ...

Chapter Three 2D Transformation & Viewing

109

 'r*-','linewidth',3,'markersize',10)
 plot([x1(i) x1(i+1)], [y1(i) y1(i+1)], ...
 'g*-','linewidth',3,'markersize',10)
end

plot([x(i+1) x(g-i)], [y(i+1) y(g-i)], ...
 'r*-','linewidth',3,'markersize',10)

plot([x1(i+1) x1(g-i)], [y1(i+1) y1(g-i)], ...
 'g*-','linewidth',3,'markersize',10)

legend ('Before Reflection', 'After Reflection')

xlabel('X-axis')

ylabel('y-axis')

title ('Reflection 2D-shape')

The Output of program:

enter no. of shape vertices: 4 Reflection on x
enter x-value:10enter y-value:20
enter x-value:30
enter y-value:20
enter x-value:30
enter y-value:50
enter x-value:10
enter y-value:50
Reflection on x, enter 1
Reflection on y, enter 2
Through the origin, enter 3
Over the line y = x, enter 4
Over the line y = -x, enter 5
enter type of Reflection: 1

The Output of program:
enter no. of shape vertices: 4 Reflection on y
enter x-value:10

Chapter Three 2D Transformation & Viewing

110

enter y-value:20
enter x-value:30
enter y-value:20
enter x-value:30
enter y-value:50
enter x-value:10
enter y-value:50
Reflection on x, enter 1
Reflection on y, enter 2
Through the origin, enter 3
Over the line y = x, enter 4
Over the line y = -x, enter 5
enter type of Reflection: 2

The Output of program:
enter no.of shape vertices:4 Reflection Through the origin
enter x-value:10
enter y-value:20
enter x-value:30
enter y-value:20
enter x-value:30
enter y-value:50
enter x-value:10
enter y-value:50
Reflection on x, enter 1
Reflection on y, enter 2
Through the origin, enter 3
Over the line y = x, enter 4
Over the line y = -x, enter 5
enter type of Reflection: 3
3.2.5 Shear
 Distorting or changing the shape of an object by differentially moving some of its
vertices as if the object internal layers are sided over each other is called Shear.
Shears either shift coordinates x values or y values, Similar to scaling, the shear
transformation requires two parameters (𝑠𝑥, 𝑠𝑦) not on the main diagonal of the
transformation matrix but on the other two positions.

Chapter Three 2D Transformation & Viewing

111

In a two dimensional plane, the object size can be changed along X direction as well
as Y direction.

So, there are two types of shearing:

1. Shearing in X direction

2. Shearing in Y direction

1. Shearing in X direction

 Shearing in X axis is achieved by using the following shearing equations:

Xnew = Xold + Shx x Yold

Ynew = Yold

 Following Figure 3.11 show Shearing in X direction.

Figure 3.11 show Shearing in X direction

2. Shearing in Y direction

 Shearing in Y axis is achieved by using the following shearing equations-

Xnew = Xold

Ynew = Yold + Shy x Xold

Following Figure 3.12 show Shearing in Y direction

Figure 3.12 show Shearing in Y direction

Chapter Three 2D Transformation & Viewing

112

Example 7:Given a triangle with points A(1, 1), B(0, 0) and C(1, 0). Apply shear

parameter 2 on X axis and 2 on Y axis and find out the new coordinates of the object.

solution

1. Shearing in X Axis

A(1, 1)

Xnew = Xold + Shx x Yold = 1 + 2 x 1 = 3

Ynew = Yold = 1

A’(3,1)

B(0, 0)

Xnew = Xold + Shx x Yold = 0 + 2 x 0 = 0

Ynew = Yold = 0

B’(0,0)

C(1, 0)

Xnew = Xold + Shx x Yold = 1 + 2 x 0 = 1

Ynew = Yold = 0

C’(1,0)

Thus, New coordinates of the triangle after shearing in X axis = A’(3, 1), B’(0, 0), C’(1, 0).

2. Shearing in Y Axis

 A(1, 1)

Applying the shearing equations, we have:

Xnew = Xold = 1

Ynew = Yold + Shy x Xold = 1 + 2 x 1 = 3

A’(1,3)

B(0,0)

Xnew = Xold = 0

Ynew = Yold + Shy x Xold = 0 + 2 x 0 = 0

B’(0,0)

C(1,0)

Xnew = Xold = 1

Chapter Three 2D Transformation & Viewing

113

Ynew = Yold + Shy x Xold = 0 + 2 x 1 = 2

C’(1,2)

 New coordinates of the triangle after shearing in Y axis = A’ (1, 3), B’(0, 0), C’(1, 2).

Program 8: Matlab Program to Shearing Transformation Program For 2d-Shape

% SHEARING TRANSFORMATION PROGRAM for 2D-shape

clc; clear all; close all
%Enter number of shape or object vertices

g=input ('enter no. of shape vertices: ');
% enter x-value & y-value for All Shape vertices

for i=1: g

 x(i)=input ('enter x-value:');
 y(i)=input ('enter y-value:');
end

Chapter Three 2D Transformation & Viewing

114

%enter Shearing factor sx & sy

sx=input ('enter Sx: ');
sy=input ('enter Sy: ');

disp ('Shear in the x direction, enter 1');
disp ('Shear in the y direction, enter 2');
disp ('Shear in the both direction, enter 3');
b=input ('enter type of Shearing: ');
switch b

 case 1
 for i=1: g

 x1(i)=x(i)+sx*y(i);
 y1(i)=y(i);
 end

 case 2
 for i=1: g

 x1(i)=x(i);
 y1(i)=y(i)+sy*x(i);
 end

 case 3

 for i=1: g

 x1(i)=x(i)+sx*y(i);
 y1(i)=y(i)+sy*x(i);
 end
end

axis ([0 50 0 50]);
hold on

for i=1: g-1
 plot([x(i) x(i+1)], [y(i) y(i+1)], ...
 'r^-','linewidth',3,'markersize',10)
 plot([x1(i) x1(i+1)], [y1(i) y1(i+1)], ...
 'g^-','linewidth',3,'markersize',10)

end

plot([x(i+1) x(g-i)], [y(i+1) y(g-i)], ...

Chapter Three 2D Transformation & Viewing

115

 'r^-','linewidth',3,'markersize',10)

plot([x1(i+1) x1(g-i)], [y1(i+1) y1(g-i)], ...
 'g^-','linewidth',3,'markersize',10)

legend ('Before Shear', 'After Shear')
xlabel('X-axis')

ylabel('y-axis')

title ('Shearing 2D-shape')

The Output of program:
enter no. of shape vertices: 4 Shear in the x direction

enter x-value:5

enter y-value:5

enter x-value:10

enter y-value:5

enter x-value:10

enter y-value:15

enter x-value:5

enter y-value:15

enter Sx: 2

enter Sy: 3

Shear in the x direction, enter 1

Shear in the y direction, enter 2

Shear in the both direction, enter 3

enter type of Shearing: 1

The Output of program:
enter no. of shape vertices :4 Shear in the y direction

enter x-value:5

Chapter Three 2D Transformation & Viewing

116

enter y-value:5

enter x-value:10

enter y-value:5

enter x-value:10

enter y-value:15

enter x-value:5

enter y-value:15

enter Sx: 2

enter Sy: 3

Shear in the x direction,

enter 1

Shear in the y direction,

enter 2

Shear in the both direction, enter 3

enter type of Shearing: 1

The Output of program:
enter no. of shape vertices: 4 Shear in the both direction

enter x-value:5

enter y-value:5

enter x-value:10

enter y-value:5

enter x-value:10

enter y-value:15

enter x-value:5

enter y-value:15

enter Sx: 2

enter Sy: 3

Shear in the x direction, enter 1

Shear in the y direction, enter 2

Shear in the both direction,

enter 3 enter type of Shearing: 1

Chapter Three 2D Transformation & Viewing

117

3.3 Matrix Representation of Transformation

 Many graphic applications involve sequence of geometric transformations. For

example, animation transformation which is require an object to be translated and

rotated at each increment of the motion.

• Transformation can be represented as a product of the row vector [x,y] and a 2x2

matrix accept for the translation.

• Transformations can be combined using matrix multiplication

• Matrices are convenient to represent a sequence of

transformations

1- Translation Matrix T(tx , ty)

 Wecanrepresent the translation transformation as follows:

 P’ = P+T,

Example 8: Consider a triangle defind by its three vertices (20,0), (60,0), (40,100) been

moved 100 units to the right and 10 units up. Find the new coordinates of this triangle

after translation. (Using Matrix)

 So, the new coordinated of the triangle are :

 So, the new coordinated of the triangle are :

Chapter Three 2D Transformation & Viewing

118

Program 7 : Matlab program to Translate 2D-shape.(using Matrix)

 100

[20

0]

0 10 20 30 40 50 60 70 80 90 10 0

[60

0]

[40
100]

 10 0 12 0 140 1 60

[160

10]

[140
110]

110

10

[120

10]

% translation transformation program for 2D-shape

clc;clear all; close all
%Enter number of shape or object vertices

g=input ('enter no. of object vertices: ');
%enter Translating factor tx & ty

tx=input ('enter Tx: ');
ty=input ('enter Ty: ');
% enter x-value & y-value for All Shape vertices

for i=1: g

 x(i)=input ('enter x-value:');
 y(i)=input ('enter y-value:');
 x1(i)=x(i)+tx;
 y1(i)=y(i)+ty;
end

axis [0 100 0 100]);
hold on

for i=1: g-1

 plot([x(i) x(i+1)], [y(i) y(i+1)], …'r^- ','linewidth',3,'markersize',10)
 plot([x1(i) x1(i+1)], [y1(i) y1(i+1)], …'g^-','linewidth',3,'markersize',10)
end

plot([x(i+1) x(g-i)], [y(i+1) y(g-i)], …'r^-','linewidth',3,'markersize',10)
plot([x1(i+1) x1(g-i)], [y1(i+1) y1(g-i)], …'g^-
','linewidth',3,'markersize',10)
legend ('Before Translation’, ‘After Translation')

xlabel('X-axis')

ylabel('y-axis')
title ('Translation 2D-shape')

Chapter Three 2D Transformation & Viewing

119

The Output of program:

enter no. of object vertices: 4
enter Tx: 30
enter Ty: 30
enter x-value 10
enter y-value 20
enter x-value 30
enter y-value 20
enter x-value 30
enter y-value 50
enter x-value 10
enter y-value 50

2- Scaling Matrix

 If a point P is being a 2x1 vector. If we multiply it by 2x2 matrix

 S=

 We will obtain another 2x1 vector which we can interpret as another point:

P’= S . P

What will happen if we transfer every point by means of multiplication by S and display

the result:

1- If S is the Identity matrix: S= No change

2- If S= then

Chapter Three 2D Transformation & Viewing

120

That mean:

- every new x coordinate would be twice as large as the old value of vertical lines.

- x coordinate would be twice as width and the same tall.

3- If S= shrink all x coordinate (shrink the width with the same tall)

Example 9: Stretch the image/object to twice and then compress it to one half of the

new width?

P’= (S1S2). P

S1S2

 identity matrix then no change.

3.Rotation Matrix

There are two types of Rotation:

1. Anti-clockwise direction :

2. Clockwise direction :

Chapter Three 2D Transformation & Viewing

121

Example 10 : Consider a triangle defined by it three vertices (40 , 100), (20 , 0), (60
, 0) be translated 20 units to the right, using matrix representation.

Solution

4.Reflection Matrix

 There are different types of Reflection:

1 - Reflection about X – axis:

2-Reflection about Y – axis:

3 - Reflection about the origin (0, 0):

Chapter Three 2D Transformation & Viewing

122

4 - Reflection about the line y = x :

Example 11: Reflect the shape (20, 70), (40, 50), (60, 70), (40, 90), about:
1- X – axis
2- Y- axis
3- origin (0,0)
4- y = x

by used matrix representation, and draw the result.
Solution:
1- X – axis:
x’=x
y’=-y

2- Y- axis:
x’=-x
y’=y

Chapter Three 2D Transformation & Viewing

123

3- origin (0,0):
x’=-x
y’=-y

4.y = x
x’=y
y’=x

Chapter Three 2D Transformation & Viewing

124

3.4 2D Viewing

 Viewing is the process of drawing a view of a model on a 2-dimensional display.
The geometric description of the object or scene provided by the model, is converted
into a set of graphical primitives, which are displayed where desired on a 2D
display.The same abstract model may be viewed in many different ways:
e.g. faraway, near, looking down, looking up.

3.4.1 Real World Coordinates
 It is logical to use dimensions which are appropriate to the object for example:

• meters for buildings
• nanometers or microns for molecules, cells, atoms
• light years for astronomy
The objects are described with respect to their actual physical size in the real world,
and then mapped onto screen co-ordinates. It is therefore possible to view an object
at various sizes by zooming in and out, without actually having to change the model.

3.4.2 How do we convert Real-world coordinates into screen coordinates?
 We could have a model of a whole room, full of objects such as chairs, tablets and
students.We may want to view the whole room in one go, or zoom in on one single
object in the room. We may want to display the object or scene on the full screen, or
we may only want to display it on a portion of the screen.Once a model has been
constructed, the programmer can specify a view.2-Dimensional view consists of two
rectangles:

1. A Window, given in real-world coordinates, which defines the portion of the
model that is to be drawn.

2. A Viewport given in screen coordinates,which defines the portion of the screen on
which the contents of the window will be displayed.
Figure 3. show the window and viewport.

Chapter Three 2D Transformation & Viewing

125

Figure 3.13 the window and viewport.

3.5 Window to Viewport Transformation (Mapping)
 The window to viewport mapping is a process of transforming or mapping the two
dimensional or world coordinate view into device coordinate. The object which is
available inside of the clipping window or world is mapped into the viewport and is
displayed on the interface window screen, or the clipping window selects the piece of
the scene from the display and view port positions it in the output device.The following
figure 3.14 show Window to Viewport Mapping.

Window:
1- A world-coordinate area selected for display is called awindow.

2- In computer graphics, a window is a graphical control element.

3- It consists of a visual area containing some of the graphicaluser interface of the
program it belongs to and is framed by awindow decoration.

4- A window defines a rectangular area in world coordinates. Youcan define the
window to be larger than, the same size as, orsmaller than the actual range of data
values, depending onwhether you want to show all of the data or only part of thedata.
5- Window defines what is to be viewed .

 What is to be viewed

Viewport

Where is to be displayed

https://www.chegg.com/learn/computer-science/computer-software/output

Chapter Three 2D Transformation & Viewing

126

Viewport:
1- An area on a display device to which a window is mapped iscalled a viewport.

2- A viewport is a polygon viewing region in computer graphics.The viewport is an
area expressed in rendering-device-specificcoordinates, e.g. pixels for screen
coordinates, in which theobjects of interest are going to be rendered.

3- A viewport defines in normalized coordinates a rectangulararea on the display
device where the image of the data appears.You can have your graph take up the entire
display device orshow it in only a portion, say the upper-right part.

4- Viewport defines where the window to be displayed.

Figure 3.14 Window to Viewport Mapping

This transformation involves developing formulas that start with a point in the world
window, say (x, y).

Chapter Three 2D Transformation & Viewing

127

The formula for window to viewport mapping is:

(Umax, Vmax)

Chapter Three 2D Transformation & Viewing

128

Example 12: A normalized window has left and right boundaries of (-0.05 to +0.05)
and lower and upper boundaries of (0.1 to 0.2). the viewport window left and right is
(250,550) and lower to upper is (100,400),find the coordinate of any point (u,v) in the
viewport window.

Solution :
Window(xmin=-0.05 , xmax=+0.05 , ymin=0.1, ymax=0.2)
Viewport (umin=250, umax=550, vmin=100, vmax=400)

𝑢 = 𝑐1 𝑥 + 𝑐2

𝑐1 =
𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑐1 =
(550 − 250)

0.05 − (−0.05)
= 300/0.1 = 3000

𝑐2 = 𝑢𝑚𝑖𝑛 − 𝑐1𝑥𝑚𝑖𝑛

=250-3000(-0.05) =250+150 =400

u=3000x+400

𝑣 = 𝑑1𝑦 + 𝑑2

𝑑1 =
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑑1 =
(400 − 100)

(0.2 − 0.1)
= 300/0.1 = 3000

𝑑2 = 𝑣𝑚𝑖𝑛 − 𝑑1𝑦𝑚𝑖𝑛

 =100-3000(0.1)
 =-200

 v =3000y-200

Chapter Three 2D Transformation & Viewing

129

3.6 Window to Viewport Transformation N

We can express these two formula for computing (u,v) from (x,y) by term:

 (translate-scale-translate)

[
𝒖
𝒗
𝟏
] = [

𝒙
𝒚
𝟏
] .𝑵

𝑁 = 𝑇2 𝑆 𝑇1

1. T1 is the translation matrix about window origin :

𝑇1 = [
1 0 −𝑥𝑚𝑖𝑛

0 1 −𝑦𝑚𝑖𝑛

0 0 1
]

2. is the scaling transformation matrix:

𝑆 =

[

𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
0 0

0
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
0

0 0 1]

3. T2 is the translation matrix position of the viewport :

𝑇2 = [
1 0 𝑢𝑚𝑖𝑛

0 1 𝑣𝑚𝑖𝑛

0 0 1
]

Chapter Three 2D Transformation & Viewing

130

Example 13: A normalized window has left and right boundaries of (-0.05 to +0.05)
and lower and upper boundaries of (0.1 to 0.2). the viewport window left and right is
(250,550) and lower to upper is (100,400),find the transformation N.

Solution N=T2ST1

𝑇1 = [
1 0 −𝑥𝑚𝑖𝑛

0 1 −𝑦𝑚𝑖𝑛

0 0 1
] 𝑆 = [

𝑢𝑚𝑎𝑥−𝑢𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
0 0

0
𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
0

0 0 1

]

𝑇1 = [
1 0 −(−0.05)
0 1 −0.1
0 0 1

] 𝑆 = [
3000 0 0

0 3000 0
0 0 1

]

𝑇2 = [
1 0 𝑢𝑚𝑖𝑛

0 1 𝑣𝑚𝑖𝑛

0 0 1
]

𝑇2 = [
1 0 250
0 1 100
0 0 1

]

𝑁 = [
1 0 250
0 1 100
0 0 1

] [
3000 0 0

0 3000 0
0 0 1

] [
1 0 −(−0.05)
0 1 −0.1
0 0 1

]

Chapter Three 2D Transformation & Viewing

131

3.7 Clipping and windowing

 Many graphics application programs give the user the impression of looking
through a window at a very large picture.
To display an enlarged portion of a picture we must not only apply the appropriate
scaling and translation but identify the visible parts of the picture for inclusion in the
displayed image. The correct way to select visible information for display is to use
clipping (a process which divides each element of the picture into its visible and
invisible portions, allowing the invisible portion to be discarded) . Clipping can be
applied to a variety of different types of picture elements:
vectors, curves of various kinds, and even polygons. The basis for these clipping
operations is a simple pair of inequalities that determine whether a point (x,y) is visible
or not.

xleft ≤ x ≤ xright , ybottom ≤ y ≤ ytop

Where xleft, xright, ybottom, ytop are the positions of the edges of the screen. These
inequalities provide us with a very simple method of clipping pictures on a point by
point basis; we substitute the coordinates of each point for x and y and if the point fails
to satisfy either inequality; it is invisible. It would be quite inappropriate to clip pictures
by converting all picture elements into points and using these inequalities; the clipping
process would take far too long and would leave the picture in a form no longer
suitable for a line drawing display. We must attempt to clip larger elements of the
picture. This involves developing more powerful clipping algorithms that can be
determine the visible and invisible portions of such picture elements.

3.7.1 Clipping window
It is refer to a rectangular region whose sides are aligned with the coordinates axes.
The x extent is measured from xmin to xmax and the y extent is measured from ymin
to ymax.

3.7.2 Point clipping
The basis for these clipping operations is a simple pair of inequalities that determine
whether a point (x,y) is visible or not:

xmin ≤ x ≤ xmax , ymin ≤ y ≤ ymax

Where xmin, xmax, ymin, ymax are the positions of the edges of the window.

Chapter Three 2D Transformation & Viewing

132

3.7.3 Line clipping
Lines that do not intersect the clipping window are either completely inside the
window or completely outside the window.
On the other hand a line that intersects the clipping window is divided by the
intersection point (s) into segments that are either inside or outside the window. The
following algorithm provide efficient way to decide the relationship between an
arbitrary line and the clipping window to find intersection point (s).Figure 3.15 show
the type of line clipping.

Figure 3.15 the type of line clipping.

Figure 3.16 show Possible relationship between line position and a standard clipping

region.

Before Clipping After Clipping

Figure 3.16 Possible relationship between line position and a standard clipping

region.

Chapter Three 2D Transformation & Viewing

133

 A line clipping procedure involves several parts:
1. Determine whether line lies completely inside the clipping window.

2. Determine whether line lies completely outside the clipping window.

3. Perform intersection calculation with one or more clipping boundaries.

 A line with both endpoints inside all clipping boundaries is saved (𝑃3𝑃4)

 Before Clipping After Clipping

 A line with both endpoints outside all clipping boundaries is reject (𝑃1𝑃2& 𝑃9𝑃10)

 Before Clipping After Clipping

Chapter Three 2D Transformation & Viewing

134

If one or both endpoints outside the clipping rectangular, the parametric
representation could be used to determine values of parameter u for intersection with
the clipping boundary coordinates.

 Before Clipping After Clipping

1. If the value of u is outside the range 0 to 1: The line dose not enter the interior
of the window at that boundary.

2. If the value of u is within the range 0 to 1, the line segment does cross into the
clipping area.

Clipping line segments with these parametric tests requires a good deal of
computation, and faster approaches to clipper are possible.

Chapter Three 2D Transformation & Viewing

135

3.7.4 The Cohen–Sutherland algorithm
The Cohen–Sutherland algorithm is a computer-graphics algorithm used for line

clipping.

The Cohen–Sutherland algorithm can be used only on a rectangular clip window.

Given a set of lines and a rectangular area of interest, the task is to remove lines which

are outside the area of interest and clip the lines which are partially inside the area.

Cohen-Sutherland algorithm divides a two-dimensional space into 9 regions and then

efficiently determines the lines and portions of lines that are inside the given

rectangular area.Figure 3.17 show the 9 regions of Cohen-Sutherland algorithm

The algorithm can be outlines as follows:-

 Nine regions are created, eight "outside" regions and one "inside" region.

For a given line extreme point (x, y), we can quickly find its region's four bit code. Four

bit code can be computed by comparing x and y with four values (x_min, x_max, y_min

and y_max).

If x is less than x_min then bit number 1 is set.

If x is greater than x_max then bit number 2 is set.

If y is less than y_min then bit number 3 is set.

If y is greater than y_max then bit number 4 is set.

Figure 3.17 the 9 regions of Cohen-Sutherland algorithm

Top

Chapter Three 2D Transformation & Viewing

136

The diagram on the above page is associated with the checking order TBRL,

corresponding to Top, Bottom, Right, Left. We assign a 1-bit where the region is strictly

outside the boundary (in the half-plane not containing the window), and a 0-bit where

the region is on the same side as the window. Thus, only the window itself is assigned

all zeros. Since the high-order bit is associated with the top boundary for example, only

the three regions above the window (outside the top boundary) have high-order bit

equal to 1.

There are three possible cases for any given line:

1. Completely inside the given rectangle : Bitwise OR of regionof two end points of
line is 0 (Both points are inside therectangle)

2. Completely outside the given rectangle : Both endpointsshare at least one outside
region which implies that the linedoes not cross the visible region. (bitwise AND of
endpoints !=0).

3. Partially inside the window : Both endpoints are in differentregions. In this case,
the algorithm finds one of the two pointsthat is outside the rectangular region. The
intersection of theline from outside point and rectangular window becomes
newcorner point and the algorithm repeats.

Chapter Three 2D Transformation & Viewing

137

3.7.5 Intersection points

Intersection points with a clipping boundary can be calculated using the slop-intercept

form of the line equation. For a line with endpoint coordinates(x1, y1) and (x2, y2), the

y coordinate of the intersection point with a vertical boundary can be obtained with

the calculation

y = y1 + m(x – x1)

Where the x value is set either to xmin or to xmax, and the slop of the line is calculated

as

m = (y2 – y1) / (x2 – x1).

Similarly, if we are looking for the intersection with a horizontal boundary, the x

coordinate can be calculated as

x = x1 + (y – y1) / m

Note

1.If the boundary line is vertical then:

x=xmin if the line is left

x=xmax if the line is right

y = y1 + m(x – x1)

2.If the boundary line is horizontal then:

y=ymin if the line is bottom

y=ymax if the line is top

x = x1 + (y – y1) / m

Chapter Three 2D Transformation & Viewing

138

Example 14 : Apply the Cohen Sutherland line clipping algorithm to clip the line

segment with coordinates (30,60) and (60,25) against the window with (Xmin,Ymin)=

(10,10) and (Xmax,Ymax)= (50,50).

Solution

Clip bit code

AB 1000 AND

 0010

 0000 (Partially inside) (clipping)

First ,Find the slop of line AB from the equation:

m = (y2 – y1) / (x2 – x1)

m=(25-60)/(60-30)

=-35/30

=-1.16

Then ,We find the coordinate of intersection point from line A A-.

The boundary line A A- is horizontal ,so Ymax=y=50 and calculate xvalue from this :

x = x1 + (y – y1) / m

= 30+(50-60)/-1.16

=30+-10/-1.16

= 30+8.6

=38.6

the coordinate of intersection point is A-(38.6,50).

Chapter Three 2D Transformation & Viewing

139

We find the coordinate of intersection point form line BB-.

The boundary line BB- is vertical ,so xmax=x=50 and calculate y valuefrom this:

y = y1 + m(x – x1)

=25+(-1.16)(50-60)

= 25+11.6

=36.6

The coordinate of intersection point is B-(50,36.6).

Example 15: Window is defined A(10,20),B(20,20),C(20,10),D(10,10) Find visible

portion of line P(15,15),Q(5,5) using Cohen Sutherland line clipping algorithm.

Solution

Clip bit code

PQ 0000 AND

 0101

 0000 Partially inside (clipping)

Find the slop of line PQ

m = (y2 – y1) / (x2 – x1)

=(5-15)/(5-15)

=-10/-10=1

We fined the coordinate of intersection point from line PP -,

The boundary line PP- is horizontal ,so Ymin=y=10 and find x as follow:

x = x1 + (y – y1) / m

=15+(10-15)/1

=15-5

= 10

the coordinate of intersection point is P-(10,10).

Chapter Three 2D Transformation & Viewing

140

Example 16: Window is defind A(20,20),B(90,20),C(90,70),D(20,70) Find visible

portion of

line1 :P1(10,30),P2(80,90)

Line2: Q1(20,10) , Q2(70,60)

using Cohen Sutherland line clipping algorithm.

Solution

Xmin=20 , Xmax=90 , ymin=20 , ymax=70

Clip bit code

P1P2 0001 AND

 1000

0000 (Partially inside) (clipping)

Q1Q2 0101 AND

 0000

 0000 (Partially inside) (clipping)

First find the slop of line P1P2 from the equation:

m = (y2 – y1) / (x2 – x1)

=(90-30)/(80-10)

=60/70=0.8

Then find the coordinate of intersection point from line P1P1-.

The boundary line P1P1- is vertical ,so Xmin=x=20 and calculate yvalue from this :

y = y1 + m(x – x1)

=30+0.8(20-10)

=30+8=38

the coordinate of intersection point P1-(20,38).

Then find the coordinate of intersection point from line P2P2- .

The boundary line P2P2- is horizontal ,so ymax=y=70 and find x fromthis equation: x =

x1 + (y – y1) / m

=80+(70-90)/0.8

=80+(-20)/0.8

=80+(-25)=55

Chapter Three 2D Transformation & Viewing

141

the coordinate of intersection point P2-(55,70).

Find the slop of second line Q1Q2

m = (y2 – y1) / (x2 – x1)

=(60-10)/(70-20)=50/50=1

Then find the coordinate of intersection point from line Q1Q1-

The boundary line Q1Q1- is horizontal ,so ymin=y=20 and calculate xvalue from this :

x = x1 + (y – y1) / m

=20+(20-10)/1

=20+10=30

The coordinate of intersection point is Q1- (30,20)

Example 17: Rectangular area of interest (defined by below four values which are

coordinates of bottom left and top right)

Xmin=4,ymin=4,xmax=10,ymax=8

A set of lines(defined by two corner coordinates)

Line 1: A(5,5), B(7,7)

Line 2: C(7,9), D(11,4)

Line 3: E(1,5), F(3,2)

Apply the Cohen Sutherland line clipping algorithm to clip the line segment.

Solution:

Clip bit code AB 0000 OR

 0000

 0000 accept (inside)

CD 1000 AND

 0110

 0000 partially inside (clipping)

Chapter Three 2D Transformation & Viewing

142

EF 0001 AND

 0101

 0001 reject (outside)

Find slop for line CD as follow:

m = (y2 – y1) / (x2 – x1)

=(4-9)/(11-7)

=-5/4=-1.25

We fined the coordinate of intersection point from line CC-,

The boundary line CC- is horizontal ,so Ymax=y=8 and find x as follow:

x = x1 + (y – y1) / m

= 7+(8-9)/-1.25

=7+-1/-1.25

7+0.8=7.8

The coordinate of intersection point is C-(7.8,8).

We fined the coordinate of intersection point form line DD-,

the boundary line DD- is vertical ,so xmax=x=10 and find y as follow:

y = y1 + m(x – x1)

=4+(-1.25)(10-11)

=4+1.25

=5.25

The coordinate of intersection point is D -(10,5.25).

