
101

entry, one for the byte). Thus, memory access is slowed by a factor of 2. This delay

would be intolerable under most circumstances. We might as well resort to swapping!

The standard solution to this problem is to use a special, small, fast lookup

hardware cache called a translation look-aside buffer (TLB). The TLB is

associative, high-speed memory. Each entry in the TLB consists of two parts: a key

(or tag) and a value. When the associative memory is presented with an item, the item

is compared with all keys simultaneously. If the item is found, the corresponding

value field is returned. The search is fast; a TLB lookup in modern hardware is part of

the instruction pipeline, essentially adding no performance penalty. To be able to

execute the search within a pipeline step, however, the TLB must be kept small. It is

typically between 32 and 1,024 entries in size. Some CPUs implement separate

instruction and data address TLBs. That can double the number of TLB entries

available, because those lookups occur in different pipeline steps. We can see in this

development an example of the evolution of CPU technology: systems have evolved

from having no TLBs to having multiple levels of TLBs, just as they have multiple

levels of caches.

The TLB is used with page tables in the following way. The TLB contains only

a few of the page-table entries. When a logical address is generated by the CPU, its

page number is presented to the TLB. If the page number is found, its frame number

is immediately available and is used to access memory. As just mentioned, these steps

are executed as part of the instruction pipeline within the CPU, adding no

performance penalty compared with a system that does not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory

reference to the page table must be made. Depending on the CPU, this may be done

automatically in hardware or via an interrupt to the operating system. When the frame

number is obtained, we can use it to access memory (Figure 7.14). In addition, we add

the page number and frame number to the TLB, so that they will be found quickly on

the next reference. If the TLB is already full of entries, an existing entry must be

selected for replacement. Replacement policies range from least recently used (LRU)

through round-robin to random. Some CPUs allow the operating system to participate

in LRU entry replacement, while others handle the matter themselves. Furthermore,

some TLBs allow certain entries to be wired down, meaning that they cannot be

removed from the TLB. Typically, TLB entries for key kernel code are wired down.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

102

Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An

ASID uniquely identifies each process and is used to provide address-space protection

for that process. When the TLB attempts to resolve virtual page numbers, it ensures

that the ASID for the currently running process matches the ASID associated with the

virtual page. If the ASIDs do not match, the attempt is treated as a TLB miss. In

addition to providing address-space protection, an ASID allows the TLB to contain

entries for several different processes simultaneously. If the TLB does not support

separate ASIDs, then every time a new page table is selected (for instance, with each

context switch), the TLB must be flushed (or erased) to ensure that the next executing

process does not use the wrong translation information. Otherwise, the TLB could

include old entries that contain valid virtual addresses but have incorrect or invalid

physical addresses left over from the previous process.

The percentage of times that the page number of interest is found in the TLB is

called the hit ratio. An 80-percent hit ratio, for example, means that we find the

desired page number in the TLB 80 percent of the time. If it takes 100 nanoseconds to

access memory, then a mapped-memory access takes 100 nanoseconds when the page

number is in the TLB. If we fail to find the page number in the TLB then we must

first access memory for the page table and frame number (100 nanoseconds) and then

access the desired byte in memory (100 nanoseconds), for a total of 200 nanoseconds.

(We are assuming that a page-table lookup takes only one memory access, but it can

take more, as we shall see.) To find the effective memory-access time, we weight the

case by its probability:

effective access time = 0.80 × 100 + 0.20 × 200 = 120 nanoseconds

In this example, we suffer a 20-percent slowdown in average memory-access time

(from 100 to 120 nanoseconds). For a 99-percent hit ratio, which is much more

realistic, we have effective access time = 0.99 × 100 + 0.01 × 200 = 101 nanoseconds

This increased hit rate produces only a 1 percent slowdown in access time. As we

noted earlier, CPUs today may provide multiple levels of TLBs. Calculating memory

access times in modern CPUs is therefore much more complicated than shown in the

example above. For instance, the Intel Core i7 CPU has a 128-entry L1 instruction

TLB and a 64-entry L1 data TLB. In the case of a miss at L1, it takes the CPU six

cycles to check for the entry in the L2 512-entry TLB. Amiss in L2means that the

CPU must either walk through the page-table entries in memory to find the associated

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

103

frame address, which can take hundreds of cycles, or interrupt to the operating system

to have it do the work. A complete performance analysis of paging overhead in such a

system would require miss-rate information about each TLB tier. We can see from the

general information above, however, that hardware features can have a significant

effect on memory performance and that operating-system improvements (such as

paging) can result in and, in turn, be affected by hardware changes (such as

TLBs).We will further explore the impact of the hit ratio on the TLB in Chapter

9.TLBs are a hardware feature and therefore would seem to be of little concern to

operating systems and their designers. But the designer needs to understand the

function and features of TLBs, which vary by hardware platform. For optimal

operation, an operating-system design for a given platform must implement paging

according to the platform’s TLB design. Likewise, a change in the TLB design (for

example, between generations of Intel CPUs) may necessitate a change in the paging

implementation of the operating systems that use it.

Figure ‎7-14 Paging hardware with TLB

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

104

7.5.3. Protection

Memory protection in a paged environment is accomplished by protection bits

associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read–write or read-only. Every reference to

memory goes through the page table to find the correct frame number. At the same

time that the physical address is being computed, the protection bits can be checked to

verify that no writes are being made to a read-only page. An attempt to write to a

read-only page causes a hardware trap to the operating system (or memory-protection

violation).

We can easily expand this approach to provide a finer level of protection. We

can create hardware to provide read-only, read–write, or execute-only protection; or,

by providing separate protection bits for each kind of access, we can allow any

combination of these accesses. Illegal attempts will be trapped to the operating

system.

One additional bit is generally attached to each entry in the page table: a valid–

invalid bit. When this bit is set to valid, the associated page is in the process’s logical

address space and is thus a legal (or valid) page. When the bit is set to invalid, the

page is not in the process’s logical address space. Illegal addresses are trapped by use

of the valid–invalid bit. The operating system sets this bit for each page to allow or

disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to 16383),

we have a program that should use only addresses 0 to 10468. Given a page size of 2

KB, we have the situation shown in Figure 7.15. Addresses in pages 0, 1, 2, 3, 4, and

5 are mapped normally through the page table. Any attempt to generate an address in

pages 6 or 7, however, will find that the valid–invalid bit is set to invalid, and the

computer will trap to the operating system (invalid page reference).

Notice that this scheme has created a problem. Because the program extends

only to address 10468, any reference beyond that address is illegal. However,

references to page 5 are classified as valid, so accesses to addresses up to 12287 are

valid. Only the addresses from 12288 to 16383 are invalid. This problem is a result of

the 2-KB page size and reflects the internal fragmentation of paging.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

