Mustansiriayah University
Collage of Education
Computers Science Department

Chapter One ope ratlﬂg SyStem Fourth Class

ABRAHAM SILBERSCHATZ ¢ PETER BAER GALVIN e GREG

Assist. Prof. Dr. Hesham 202 1 -2022

ALABBASI



1. Introduction

® A modern computer system consists of:

One or more processors, Main memory, Disks, Printers, a keyboard,
a display, Network interfaces, and other Input/output devices (Hardware).

MONITOR

® Computers are equipped () with a layer of software called the
operating system, whose job is to manage all these devices and
provide user programs with a simpler interface to the hardware.

51 o8 Lgaga Jialiy ¢ Jandilll alhai o el ) (e (6 sl anal i gaaSl) 3 gl
Al il gSall o3g) Aasae dgal 50 aadiiunall zal o 25 3y 5 eaY) 038 aren



1.1 What is an Operating System?

® A program that acts as an intermediary (t:«3) between a user of a computer and the
computer hardware.

L datall il g€all g Apadad) addiios ¢ Jase g8 Jany zall

® The purpose of an operating system is to provide the environment (i) in which the
user can execute programes.

Anal 3 LT a3 Tsal) sy LgDUA a1y Aualie Ay b5 g Skl alISS e (2 il

« OS is a resource allocator (s pawis)
- Manages all resources =) sl IS 5
- Decides between conflicting requests for efficient and fair
resource use
3 ) sall Jatall 22N 5 36l e J gasll 4y jlaaiall cildlall g 54
« OS is a control program (5_ks gl )
- Controls execution of programs to prevent (&) errors and
improper (s »e) use of the computer.
doadall Cuuliall yal) aladiu) adag sUadl) & gan el el ) A8 s 8 k)



1.2 Computer System Components

® Computer system can be divided into four components:

1- Hardware: (CPU, memory, 1/O devices),
provides basic computing resources e el L e

2- Operating system: Controls and

coordinates (&~u) use of hardware among
Varlous app|lcatlonS and users compiler assembler text editor dsa)t/esl?:ns]e

system and application programs

3-  Application  programs:  (Word
processors, compilers, web Dbrowsers, SSeming o

database systems, video games

computer hardware

4- Users: People, machines, other
computers




1.3. The Operating System Goals

1. The primary goal of an O.S. is to make the Computer
System convenient (pis ,@35) to use.
diyay dwlodl alas audg ¢ Jaridll olaid (g 5! gl
‘a‘.\:u.w)U daidog daidao

2. A secondary goal is to use the computer H/W in an
efficient manner (dlxd das,las),
dJlxo



1.4 The operating Functions

A more common definition: Operating system is the one program running

at all times on the computer, usually called the kernel.

La Bale g dpulad) Ao B g¥) S 8 Jary o 1) galipall g4 Jdal) allai sle gudi JiS) iy g
8l il o

0.S. performs many functions such as: e J) sall (e de gana Jurdall aUas 505

1. Implementing the user interface. paaiuwall 4gal 5 Jiiai

2. Sharing H/W among users. Oseadiuall fp daalall Gl Sall 48 Lo
3. Allowing users to share data among themselves. ag¢in GUlall 4S jliay (preddiuall ~ Lol

4. Preventing users from interfering with one another.¢peaiual n Jalaill 2

5. Scheduling resources among USerscpeasivall (3 ) sall & saa



1.4 The operating Functions Cont.

6. Facilitating 1/0. z)a¥s JaaY) Gllee ¢l jal dagus

7. Recovering from errors.sWaa¥! =3zl

8. Accounting for resource usage. ) sall aladiul e dualaall
9. Facilitating parallel operations.a: ) siall Slilaall Jagusd
10. Organizing data for secure and rapid access.a syl s (¥ J g ll L) andais

11. Handling network communications. 4Suill oyl ae Jaladl



1.5 Operating System Categories

Classified into three groups, based on the nature of interaction
between the computer and the user:
puseiunedly Aol o Jelaill dapdo (e Toladiel apolze BY JI Ciivas

1. Batch System

2. Time-sharing System

3. Real Time System



1.5.1 Batch System

/{J.é Batch
\ _ .06/ \
) ©
4 T
Operator
_—r
0o o /
be \
y \0‘0 Batch

« Users submit jobs on a regular (25ix) schedule (e.qg. daily, weekly,
monthly) to a central place where the user of such system did
not interact directly with C/S.

2o Al Sao pladl 14e pastiue 4 Jelan Y (550 086 ] (G ¢
Al pUas
« To speed up processing, jobs with similar needs were batched together

and were run through the computer as a group.
Thus, the programmers would leave their programs with the operator.

OO el o3y Ui Gl il s SUEE I T & |
el ae agaal g O s el & s ¢ UL 5 Ao ganaS i gaasl)

Computer




1.5.1 Batch System Cont.

« The output from each job would be send back to the appropriate
programmetr.

« The major task of this type was to transfer control automatically from
one job to the next

S5l Jos (o BRI (Sl Ji5 (p ot 1) s )| gl
Advantages: batch system is very simple.

Disadvantages: There is no direct interaction between the user and the job while that job

IS executing.

sl e duais U3l Josdly pdsial! (o ilee Jelas dgy Y



1.5.2. Time sharing System

Time Sharing Sistemn

Host Komputer
Terminal Temminal Terminal Temninal

* Provides online communication between the user and the system
pladly pusuiuad! u Alwdl JLasY LY

 User gives instruction to the 0O.S. or to the program directly and
receives an immediate response, therefore some time called an
interactive system.

U ¢ d)58 Dlomil (Blusg 8 be ol JI 51 0., J whladl Jas pusiul
Seladl plaill bo c3g § (o

« Allows many users simultaneously (<84l 4 4) share the computer
system where little CPU time is needed for each user.

Tl Cum duwlodl pllas &5)liney gl pudd (3 oSt (po dodal) e
L3Spall dadlandl Bu>g po Judd <9 ] pusciun S



1.5.2. Time sharing System Cont.

« The system switches rapidly(a=_»~=) from one user to the next user,
This gives the impression (¢lkil) that they each have their own
computer, while actually one C/S shared among the many users.

O Sl yide aal Al olad as gy 2815l 8 Laiy ¢ 4 (ald daals e Legia
CpedAall fpe el

Advantages: Reduce the CPU idle time

Disadvantages: More Complex



1.5.3. Real Time System

« Used when there are rigid time requirements on the operation of
a processor or the flow of data
il 3835 ) bl Jariii e Ao jlia 4y ) cilallatie @llin () K5 Ladie adiius

* A Real-time system guarantees that critical tasks complete on time

G slhaall gl 8 A jal) Cilagall JLeST ez sl i 5l) Aokl

« The Radar system is a good example for the real time system

S
Lo
g
b5 2;»
q
- .
| - e hn
. : »
-
A
2 g A ——
e S
oA =



1.6. Performance Development

« 0O.S. attempted to schedule computational activities to ensure good
performance, where many facilities had been added to

;) SV ey (S dbal) Adads) Al gas gy Jadal) ol
Al CBLgudll (iamy ddliial o5 Cua

O.S. some of these are:

1. On-Line and off-Line operations

2. Buffering (<&sall ¢pjadl)
a- The single-buffered
b- The Double-buffering

3- Spooling



1.6.1. On-Line and Off-Line Operations

« A special subroutine was written for each I/O device called a

device-driver.

device-driver 4t o« I/O device JN 4l &3 jald e b mals

« Some peripherals (I/O devices) has been equipped (5¢=) for:
- either On-Line operation, in which they are connected to the
processor.
- or off-line operations in which they are run by control units not

connected to the central computer system

~ % %> I/O devices Jl =x

processor Jb il . S5 Jl; On-Line operation -

control units J sk oe 25 )5 Off-line operations -
central computer system b aasi jo e 5SS



1.6.2. Buffering

s
\ =
e

« A buffer is an area or primary storage for holding (<) data during

I/O transfers

Z) DAY/ Jray) di cllee oL clily Jadal ulal (0345 o dale 2 Buffer 2

 On input, the data placed in the buffer by an I/O channel, when the

transfer is complete the data may be accessed by the processor.
e g ¢ C\JA\)“ / d\AJY\ 38 A.L.ua\j.\ Buffer ‘_g L_ﬂ_\\:u]\ S, ?L ¢ d\AJ\X\ C'_MLAQ ;\ﬁ\ e
bl g sl el Sy ¢ Jaill JLas)

There are two types of buffering:



1.6.2. Buffering Cont.

1. The single-buffered

Operating System User Process

Move

(N

1/0 Device — 8 @
-

The channel deposits data in a buffer, the processor will accessed that data,
the channel deposits the next data, etc. while the channel is depositing data,

processing on that data may occur.

Al ) Jsa sl aikiivy Processor 4 |, Buffer 4 & cblall ¢lal slsl) o g
3 ¢ bl gl sl Al el Gl ) Lag ¢ A bl gy SLED a8y ¢ il
i) Sl e dalles Giaal



1.6.2. Buffering Cont.

2. The Double Buffering

Operating System User Process

o ) @ - :D

 This system allows overlap (J2)x) of 1/O operations with processing
dalladl 5 1oAY/ Jaay) cllee G Jalailly aUail) 12 ey

« While the channel is depositing data in one buffer the processor
may be processing data in the other buffer
doxlaey llasdl pgiy 03 ¢ JoMI Buffer JI 3§ ULl glub 8Lall pld <Ll

i) ~ I BufferJ 3 wbl
* When the processor is finished processing data in one buffer it

may process data in the second buffer
& Ll dalleay » g3y 38 ¢ JoVI BufferJl § cblull dalles (e glleall plgiil aie
A BufferJ @

- In buffering the CPU and I/0 are both busy.



Spooling

disk

Lo < ey - A=,

card reader line printer

 Spooling uses the disk as a very large buffer for:
- Reading as input devices
- And for storing output files until the output devices are able
to accept them

dal (e 3a € Ciie 338 (a8l SpoOling I pasins
JAa) 5 jealS se) jall -
sl s e 508 21 AY) 5 jeal mual s ) AY) clile g 38l -

« Spooling allows the computation of one job to overlap with the
I/O of another jobs

Al JleY z) AY/ JAaaY) ae Jalaill e Jead @il Spooling ) e

 Therefore spooling can keep both CPU and the I/O devices

working as much higher rates
Y ey Jaad) ‘zg C\PY\ / d&dlﬁ\ 3‘}@4“5 CPU 4 (e 8 Jaa ) Spooling A C:\.L:.\u..g S
Alle

4



1.7. Multiprogramming

* Spooling provides an important data structure called a job pool kept
on disk, the O.S. picks one job from the pool and begin to execute it.

Jisw OS e poudll Je Jai=i job pool (pud dage Uy A Spooling Ji ,9s
234235 3 Tuws job pool JI ;e uxlg Jes

 In multiprogramming system:
- When the job may have to wait for any reason such as an I/0O
request, the O.S. simply switches to and executes another job.

: multiprogramming Ji el 3
ol OS I,z / Jsa¥l b Jro oo (Y U5 ) Jonl oy Loie -
odaig y31 Jas ) Jany

- When the second job needs to wait the CPU is switches to another
job and so on.

J3Sa 5 Al Jee (438l dalleal Baa g Jain ¢ HUatY) ) S Jaadl zlisg Levic

The CPU will never be idle
140 ALalA 45 3 sal) dadlaal) 5as g oS5 o) Sl g



1.7. Multiprogramming Cont.

* The figure shows the multiprogramming layout, where the O.S.

keeps several jobs in memory at a time.
« This set of jobs is a subset of the jobs kept in the job pool.

bodalb OS JI Jadise Eu> ¢ the multiprogramming 3 dadass JSE| o g0
Aty 8y (3 8ySIUI 3 JlesVI oy
Job pool § dbgazall Jbedl o dusyd ds gasmo (B JosYI (0 ds gasmoll 0

operating system

job 1

job 2

ob 3

job 4

512M



1.8. Parallel Systems

* Computers today, are multiprocessors system, also known as

Parallel systems, these multiprocessors sharing the computer Bus,
the clock, and sometimes memory and peripheral devices

0dng ¢ djlgiell el el Ll CByad ¢ olallaodl suaie plas & poddl (39uaSIl B3]
4.8,k 834> Memory JI b=y « Clock Jig « Busd! @ A3 Badmiall Oladlas))

The advantages:

- Increase the throughput .

- Save money compared to multiple single systems because the

processors can share peripherals, cabinets, and power supplies.
- Increase reliability

Aoyl 8oL -
48,1 83421 dSHlaw pSer ladlaadl Y Badaiedl dua,8)) dalasYb &)lae JWdl pdgs -
sl CA\.)LM;\g oplisdlg
4353 gall 820 -
Two types:

1. Asymmetric Multiprocessing
2. Symmetric Multiprocessing



Multiprocessing Systems

1. Asymmetric Multiprocessing

;\J:Ld.d\ Jﬁg Baliall @M‘ Asymmetric
- Each processor is assigned a specific task. Multiprocessing
- A master processor controls the system; the Slave P1 |
other processors either look to the master N
for instruction or have predefined tasks. —
- This scheme defines a Master-Slave i .
relationship. (No Shared Memory)
- The master processor schedules and
allocates work to the slave processors.
e JSI Badaa daga (i Al

cs Ll LQJAY\ Cladleal) duays ¢ el.h.d\ uﬁ aSa’y Master (s A gllaa -

Mumel.g.al.g.tﬁj Clagleil) o J gaall oo ) zlleall
Master-Slave relationship Ll g ) 48de Jaladal) 138 dasy -

Slaves ) cilallaal danads g Jaad) A gany i I zllaall 2 68, -




Multiprocessing Systems

Symmetric

2. Symmetric Multiprocessing Multiprocessing
dfilatial) Badnial) datlaall _— i,
CPU 2 . P2
- Each processor performs all tasks,
means that all processors are peers; LRU 2 .
- No master-slave relationship exists (SHATSEMAmAEY)

between Processors.

ad Clalladl) mvea o)) i Laa e@‘@%j@;\eémdieﬁa—;
. (‘\_\S\.SAA) o) A
Sl o master-slave relationship 483ke as 8y -



1.8. Distributed Systems

Site A

Site C
« A resent C/S is to distribute S =
computation among several -
processors. In Contrast to the ‘ Il'v.a";“ Resources
parallel system, the processors D e
do not share memory and clock.

Site B

il o clallas sae (o Cililuadl a5 a5 Llla cilulal) 2ol
clock 31 sl Memory ) & Glallaall & 135 Y ¢ ) slall alaill 4

* The processors communicate with one another through various

communication lines, such as high speed buses or telephone
lines.

de o OIS J81g5 Joo ¢ daliseo JUall bglas pe (aadl lpan 2o Gladlasl Juolgss
Bl bglas of dle



1.8. Distributed Systems Cont.

« The reasons for building distributed systems:

1. Resource sharing 2, sl 4S jLia

2. Computation speedup <bbuall a yus
3. Concurrently Work <@l (usi & Jaall
4. Reliability 4 i gl



End of Chapter One




Mustansiriayah University
Collage of Education
Computers Science Department

e [ DPERATIN
SYSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2022-2021



2.1 Computer System Operation
daulall 31.23 Jas

® One or more CPUs, device controllers connect through common bus providing

access to shared memory

mouse keyboard printer  monitor

éwks@ é online [
AN

USB controller

—_

/|

graphics
adapter

disk

CPU
controller

memory

A (e Aliaia aSaiill Clas g ¢ 43S el dadlaall Cilan g e SIS ) aal g e danlal) ol o) S5y ©
5 S O i e SR | 1.2



2.1 Computer System Operation Cont.

® Each device controller is in charge of a particular device type (for example, disk
drives, audio devices, or video displays).

® The CPU and I/O devices can execute concurrently
® Each device controller has a local buffer
® CPU moves data from/to main memory to/from local buffers

® Device controller informs CPU that it has finished its operation by causing an
interrupt

9 ¢ cigal) B3galy ¢ gal BY il jaa ¢ JUal) Qs (A8) Cpra S £ 58 (8 A glhana pSai Bang S ©
(et

) g B (Jand) 355 0 ey ) AY) [ JAN) 534l Al Aalaal) Ban g @

M oald cliga (e e jlgad) B asatBaag JS g giad ©

s Lualil) ABigall ¢y Laall ) fcpa e 1) B SIAN L) / Cpa cililid) Ja A 3S el Aallaal) Bas g o g5 ©

dadaliall & o) (3 sk co Ledae olgiily 43S pal) dpllaal) 3aa g adlely jlgad) aSaliBan g a6l ©



Computer Startup

® When it is powered up or rebooted—it needs to have an initial program to
run.  LAED gl gl 4l (S O e Aplal) Jaadd Bale) ) Jdd oy Ladis
® The initial program or bootstrap program is

| . Stored in ROM or EEPROM,

2. Initializes (reset) all aspects (¢! >) of the system from CPU registers to device
controllers to memory contents.

3. Loads operating system (kernel) and starts execution that program
gl ali g o) (AgY) galidl
EPROM i ROM I & ali ) 128 033y . |
B il ging 1 Slgall asad cilan g 1) A8 pal) Aadlaall Bas g o (ha dplall a3 gl ja) aran i Bale) 2
Zealall 138 BT Tagy g (81601) Sl aUAS Jpans , 3
® To accomplish this goal, the bootstrap program must locate the operating-system
kernel and load it into memory.

® Once the kernel is loaded and executing, it can start providing services to the system
and its users.

BSIAN 8 aliaat g Jan il AUt 3) 63 a8 90 00aT bootstrap g=bin (e caag ¢ Cargl) 1 5adanl @
Agadiiina g albaill ileandll a8 lag o (Say ¢ Ll g 3) gill Jaand o ey @



2.2 1/0O Interrupts

® The occurrence of an event is usually signaled by an interrupt from either the
hardware or the software.

eyl o) dgalall @l g€all (e INterrupt dablia gk s das by A 5 LEY) Al L Bals
10§ e Sy

® Hardware may trigger an interrupt at any time by sending a signal to the CPU
usually by way of the system bus.

Aadlad) s g ) 508 Sl sk e s gl b Aadaliall ) sa5 38 dalall @il Sl ©
System bus Gk e sile 43S

® Software may trigser an interrupt by executing a special operation called a
y trigg pt by gasp P

system call (also called a monitor call).

.(Monitor call



2.2 1/0O Interrupts Cont.

® Interrupts are an important part of a computer architecture.

sl 4 jlaze (30 aga s 3> A Interrupts J) @

When the CPU is interrupted, it stops what it is doing and
immediately transfers execution to a fixed location.

The fixed location usually contains the starting address where the
service routine for the interrupt is located.

The interrupt service routine executes; on completion, the CPU

resumes the interrupted computation.

A Sl il ey 4y g L 0 8 Ll B3 a) dallaal) B3m g Akl o Lasie
Axkliall dadall (5 ) 22 g Cus o) ) gie e sale Culill w8 gall (5 5iay -
ebiiall Jasd) 4558 yall dadlaall saa g Calio ¢ oLV die ¢ dadaliall dadd (5 ) i Q-



2.2 1/O Interrupts Cont.

® Interrupt transfers control to the interrupt service routine, through the interrupt vector,

which contains the addresses of all the service routines

g Cngbie Ao g gian Al ¢ dabliall dadie PIA (e ¢ dabalial) dadd (g ) aSadl) S5 dalalial)  ©
YOREN( Galid g

This transfer would be to invoke a generic routine to examine the interrupt information.

This routine, would call the interrupt-specific handler.

Adaal) dablial) gllaa godaw ¢ gl 134 Aadalial) cila glaa (aadl ale (g slodin) oo JAI) 1A oS @

Interrupts must be handled quickly. Since only a predefined number of interrupts is

possible, a table of pointers to interrupt routines can be used instead to provide the
necessary speed.

Q\Jﬁ:}d\d\g.};?‘éﬁm\a&ﬁc Ciladaliall (e Waa 338 238 5 g Sy Y A | M0 _:\Sﬂcﬂl&hw\e&ahﬂ\y\*

AU A pal) 0 g Gl3 p Yoy oY) Aadalial
® The interrupt routine is called indirectly through the table, with no intermediate routine
needed. Generally, the table of pointers is stored in low memory (the first hundred or so

locations). These locations hold the addresses of the interrupt service routines for the
various devices.

ol ¢« Lagas g (g ) Aalal) ase aa oJoaadl A (e pdile @ J8&; dakllal) gy SNy ©
S 28l sall oda (o giad (adl gall (e D gad o) a8 ga dila Jgl) Aadiia B 813 A &l pdigall J g (AT
ASlA Al 5 5ead dataliall dadd g ja) o glis



2.2 1/O Interrupts Cont.

This array, or interrupt vector, of addresses is then indexed by a unique device number,

given with the interrupt request, to provide the address of the interrupt service routine

for the interrupting device.

g&h@"huc#ﬁj%aé)&u‘ﬁ&}&‘wca&hw‘@\gic%‘M‘Ohh)@aﬁ:‘eﬁ
Aakalfal) lgat dadalfall dadd (g ol gis a8 gl ¢ dataldall

The Interrupt architecture must save the address of the interrupted instruction.

Lghindlia i Al cilagdail) o) gie Jday dadalial) 4 jlara a 85 ()} iy

The operating system preserves the state of the CPU by storing registers and the
program counter.

el dae g cBlad) 3RS G sk 08 A4S pall Apdlaal) Bas g Alla o Jaadal) aUAS Jadlay

After the interrupt is serviced, the saved return address is loaded into the program
counter, and the interrupted computation resumes as though the interrupt had not
occurred.

Jandl dallaall Cailiniiy g ¢ galipnll das b 5 ghaal) gla ) Ol gie Jaaad ally ¢ dadaliall dadd £lgiil) day
.Gaaal al dadalial) o)) of LaS adalialf



2.3 Storage Structure

Main memory is the only large storage area that the CPU can
access directly.

>
3
1
3

« The CPU can load instructions only from memory, so any

O R g 0T, | | o

programs must be in main memory (also called Random-
Access Memory or RAM) to be executed.

* Implemented in a semiconductor technology called
dynamic random-access memory (DRAM).

B ke Lgl) J e 1) A 38 pal) A llnal) Ban o (S (Al B 1) B sl (AN Aalisa (A A 1) B SIAY

Lpai 1) 3 SIAN A el o 05Se O g LA ¢ B SIAY) (e Jakh cilagdail) Jraa LgiSas 43S sal) dpllaad) Baa g
L2 bl a5t (RAM 1 (Al gdad) J gaa gl 8813 Lia) pandi)

(DRAM) 4Saalidll ) gudinl) J gua o) 3 813 pans Dl gal) oludi] 43385 MR (ha A giuaa 3 SIAY) o

« Read-only memory, ROM), one of its types is Electrically

Erasable Programmable Read-Only Memory, EEPROM).

Because ROM cannot be changed, only static programs, such
as the bootstrap program, are stored there.

EEPROM). « Ll ¢S zueall 446 Jah 55 Al 5 813 g8 de) gl aaf ¢ ROM b 55 &Ll 5 813
Jbootstrap gl Jia (b Jash LU gal ) A0 Al (ROM s Sy ¥ ASY 185 o



2.3 Storage Structure Cont.

s o

* We want the programs and data to reside in main memory permanently. This
arrangement usually is not possible for the following two reasons;

1. Main memory is usually too small to store all needed programs and data
permanently.

2. Main memory is a volatile storage device that loses its contents when power
IS turned off or otherwise lost.

e sale iyl 1 s Sy A Hl) 3 SIANN (8 B e sall ULl el ) (5SS O 250 e
5 Cdll) el (Sae

2.3 JSG 4 U AUl g el jal) xaes (g 3RS a3 juraa () S5 La Bale daadd HI 3 SIA ]
Madid gl AUl Jusds ol wie 4l gina 28y Calita 0 )35 Jlea & dannti ) 5 SIA 2



2.3 Storage Structure Cont.

Thus, most computer systems provide:

* Secondary storage as extension of main memory that provides large
nonvolatile storage capacity (Magnetic disk, CD-ROM (740 MB), DVD (4.7, 9
GB)).

Hard disks is a rigid metal or glass platters

covered with magnetic recording material

- Disk surface is logically divided into tracks,
which are subdivided into sectors.

- The disk controller determines the logical

interaction between the device and the computer

* Solid-state disks — faster than hard disks,
nonvolatile

- Various technologies (Flash memory, personal
d | g|ta| ass | stants (PDAS) ! Compact flash (CF) & secure digital (SD) cards, a Sony memory stick, and a USB memory key.

The main differences among the various storage systems are
speed, cost, size, and volatility.



Storage-Device Hierarchy

® Storage systems organized in a hierarchy according to:

- Speed

- Cost
- Volatility

registers Q
o Il
/1 h 4
cache
g |
I v 1
main memory
£ |
i v ’
solid-state disk
R |
I V
hard disk
| I
il L 4
optical disk |

|

Ll

magnetic tapes




2.4 Hardware Protection

® To improve system utilization, the O.S began to share system resources among

several programs simultaneously.
Laly cdy b malall (o Bl g aUBH) Ylge AGLER b Jubdal) allas fay el aladiud Gl

® Multi programming put several programs in memory at the same time. This
sharing created both improved utilization and increased problems.

Gt ) el 1 (oo By gl il A SO B malall (e bl pal Bamial) daapd)
L JSUial) Baliy (Sl alasiy)

® When the system was run without sharing an error in a program could
cause problems for only the one program that was running. With sharing
many processes could be affected by a bug in one program.

oudli (B Jad JSLae o o oSa galin B Uadl) Glb AGLaall 08 (e Jedal) ali Jany Letic
Laly galin 8 Uady Sl o) Sa processes Jl o null , AGLEAN . Jubal) 3 gall



2.4.1 Dual Mode Operation

® To ensure proper operation, we must protect the O.S and all programs and their data
from any malfunctioning program.

A S o galin ) (1 age Aaldl) Cilibully gabal) aranyg Juddl) aUST dilas s aaled) Jaad) ojlacal
Jand)
® Protection is needed for any shared resource. The H/W support to differentiating

among various modes of executions. Therefore we need two separate modes of

operation:
- 3 Callad Calide o Juaall) ao i 1 Caana Lalal) Cilig€e J). ida 3y9a (Y Llas ) dals dlia
tJaadill (pluadia Gumdag () Aalag g AN
1- User mode

2- Monitor mode (also called kernel mode, system mode, or privileged mode).

® Anbit called Mode bit is added to H/W to indicate (L) the current mode;
- Monitor (0): execution is done on behalf of the 0.5 & 4l s Al
- User (1): execution is done on behalf of the USER ¢ 4uly dusil) Ay

This protect the O.S from errant (oxkasll) users and errant users from one another



2.4.2. 1/0O Protection

® To prevent ( &«) a user from performing illegal (4x &l »e) 1/O:

-We define all 1/O instructions to be privileged instructions.
-Thus user cannot issue I/O instructions directly, they must do it through the O.S
Sae il A 1/0 il guan ¢ il o) i

0.5 J3A (e lly Al 4e oy Ly Bydilia Bygeas | [O clay) Jlana) priiuall €as ¥ iy

® For 1/O protection to be complete: /0 ) diles Jaiss <

* We must be sure that a user program can never gain control of the computer in
monitor mode.

B A sl Bl Ao ey @) Iul oSa ¥ asdieall malin of e cpaslie O o g
Monitor mode



2.4.3. Memory Protection

® To ensure correct operation: we must protect the interrupt service routines
in the O.S from modification.
Jwdll (e O.S. 3 interrupt service routines 4laa can maasall Jadal Gladl

|- We must protect the interrupt vector from modification by a user program.

7l ) aadiiiall J8 (e (aedll (pe dadalial) dsie dglea Wale g
2- Also we must protect the interrupt service routines in the O.S from

modification.

Jaaill 40 O, S (A Aadaliall dedd el ja) Alea Wile Ll

® What we need to separate each program's memory space, the ability to determine
the range of legal addresses that the program may access, and to protect the

memory outside that space.

(gl L) Juay 28 A (rgliadl Glai paas e §yaally cralis JS 3,803 dablua Juad ) g las
Aaload) @l zA 5SIA dulaag



Memory Protection Cont.

® This protection can provide by using two registers usually a base and a limit

0

® The base register holds the smallest legal operaling
physical memory address gysan
‘ 256000
5B =85 SIA Gl gie jral Jass o
® The limit register contains the size of the 300040 « 300040
range process base
limit
¢ Example: process
Base register is 300040 880000
Limit register is 120900 1024000

Then the program can legally access all addresses from 300040 through 420940

(base + limit).

420940 ) 300040 (e o sbial) aren ) (S 88 IS5 J g sl zali ol Sy )



Memory Protection Cont.

® The CPU comparing (0% every address generated in user mode with registers

accomplishes this protection

Aleall 034 (3iatl el pn pdkaall g (A 0508 &3 (o sie S (N5 A 38yl Aallaall Baa

Any attempt by a program executing in
user mode to access monitor memory
or other user's memory results in a
trap to the monitor which treats the
attempt as a fatal error

User mode 1 & iy malin Jé o dlglas
(aUail) Bas) mMonitor Ju daldd 5SIA ) guast
dablia Jlaal ) a3 AY) Cmesdiaal) 3503
Uad< Alglaall 0da Jalad Allg monitor 3 ) (trap)

za

Dase

address .~ yes
P ——< 2

no

trap 10 operafing system

base + Imit

-~ 5
", s
" -~

PNy

no

monitor—addressing error memory

® This scheme prevents the user program from modifying the code or data

structures of either the O.S or other users.

) damd e addiiial) maliy divall 13 Al

s 0.S (4w J< data structures 4 code

CRAY) (peddiall



2.4.4. CPU Protection

The third piece of the protection is ensuring that the O.S maintains control
Bhaddl Ao 0.S ) Bilay o laca 98 dglaadl (e EUY giall
We must prevent a user program from an infinite loop, and never returning
control to the O.S
0.S (A bl 22 ¥  infinite loop 2 Jgaal) (e addiual) maliy aie g
To achieve this goal we can use a timer, a timer can be set to interrupt the
computer after a specified period. The period may be fixed (1/60 second) or
variable (from | millisecond to | second).
Al ¢ Bpsitia of Aul 1/60 Aul Bal) 985 B, Bassa 85 o duwilal) dabalial timer (uad (e
saaly 4l ) At
To control the timer: The O.S sets the counter, according to fixed-rate clock.
Every time that the clock ticks the counter is decremented. When the counter
reaches (0) an interrupt occurs, and control transfers automatically to the O.S,
which may treat the interrupt as a fatal error or may give the program more

time.
3 - T-L & e.u clock ) sy 8 S Lg cull clock Jaal W4y counter ‘; ddaa dasd < 0.S))

dakalial) Jalay 48 iy 0.8 ) Lilals Ps;d\ J& alyg ¢« interupt ) &asy (0) L;\ Jas Ladic g counter
gl o el galipd) aay B gf 7ol Uads



2.5. System Calls

® System calls provide an interface to the services made available by an operating

system Jurdill alai s 5860 Al cileadll dgal g ji o
These calls are generally available as:

= Routines written in C and C++,

= Although certain low-level tasks (for example, tasks where hardware must

be accessed directly) may have to be written using assembly-language

instructions

® From the example you can see

source file

v

destination file

® Even simple programs may make heavy use

of the operating system.

® Systems execute thousands of system calls

per second.

LS

Al b Lghe (o Aty dadaill o 85 =

4 Example System Call Sequence A

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen
Terminate normally Y

\







Mustansiriayah University
Collage of Education
Computers Science Department

s |V PERATING
SYSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2021-2022



3.1- 3.2 Process Management- Process Concepts

® Aprocess is a program in execution; process execution must progress in sequential

fashion.
Aaliia A2yl Process J) aam aad 95 o) o 2enl) 8 xalin g8 Process

® A process need certain resources such as CPU time, memory, files, and 1/0O devices to
accomplish its task. These resources are allocated to the process either when it is created

or while it is executing.

sy CPU time, memory, files, and /O devices Jis duss 3)l90 J) Process J) zbias
laduan W ) Lhilds) vie L) Process Al ajlgall s3a (aradd A lgiega

® Early C/S allowed only one program to be executed at a time. This program had
complete control of the system and had access to all of the system resources.

® Today C/S allows multiple programs to be executed concurrently, therefore consists of
a collection of processes.

s zalinll 138 (IS5 aaly g 8 dadh aalg aliyy 20T macd ClS ToV) Giluslall dada o
; ?M\ .JJbA e ‘_;1 dyéjj\ @Lﬂmfj ?M\ GJ:_ “ALY Wf

o degana o Uil oging Jallg ¢ gl aii & alys Bae 20 and gl Cilacalal) Aokl o
processes .



3.3 Process State

® As a process executes, it changes state. The state of a process is
defined in part by the current activity of that process. Each process
may be in one of the following states:

Al A Llasl) PIA e Wik Process 1) dls Caujas S L lgalls a5« Process ) dan oL
;300 VA aal 8 06 o) (Sae Process U< .Process

® New: The process is being created

® Running: Instructions are being executed

® Waiting: The process is waiting for some event to occur

® Ready: The process is waiting to be assigned to a processor
® Terminated: The process has finished execution



» These names are arbitrary, and they vary across operating systems.

» The states that they represent are found on all systems.

« It is important to realize that only one process can be running on any
processor at any instant.

 Many processes may be ready and waiting, however. The state diagram
corresponding to these states is presented in Figure 3.1.

Abal gl b llaa () Lo Lhain (Say L aas Process o) ¢l ol agall o1

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Figure 3.1 Diagram of Process State



3.4 Process Control Block (PCB)

% Each process is represented in the operating system by a Process
Control Block (PCB), also called a Task Control Block.
Loyl wuiy <Process Control Block (PCB) dhul s Jdusidll oUai 3 Process JS Jia aiy
.Task Control Block

% It contains many pieces of Information associated with each process,

including these:

:eld 8 Ly « Process JdS ge adasijall Gl glaall (e el e (5 58ny

® Process state: running, waiting, etc.
® Program counter: the address of the next instruction to execute
® CPU registers: like, accumulators, index registers, stack pointers

® CPU scheduling information: priorities, scheduling queue
pointers

® Memory-management information: the value of the base and
limit registers, the page tables

® Accounting information : CPU used, clock time, start, time limits

® 1/0O status information: list of 1/0 devices allocated to process,
list of open files

process state

process number

program counter

registers

memory limits

list of open files

Figure 3.2 Process
control block (PCB)



3.5 Process Scheduling
® The objective of multiprogramming is to have some process running at all times,
to maximize CPU utilization
o B ] Gaiatl ¢ GV maes b 2wl 28 Process J) e s ol 58 saxiall daasll e ingl
CPU 1) aladsl
® The objective of time sharing is to switch the CPU among processes SO
frequently that users can interact with each program while it is running.
Opeddieeall (Ko Guany ) S0 JSE0 Processes ) u CPU (Lan ga time sharing J) (e caagl)
b ol maliy U< pae delal
® The process scheduler selects an available process (possibly from a set of several
available processes) for program execution on the CPU.

yaiil (384l Processes Jl (e degana (0 L)) jigia Process i, process scheduler
CPU Il & zaliyl)
® For a single-processor system, there will never be more than one running process.
If there are more processes, the rest will have to wait until the CPU is free and can

be rescheduled. ;
Al e 3 pall Allia IS 1) 3as) 5 Process - 28 (e S @llia 6 o ¢ aal g el o3 alail 4l ©

(Ae )W) U grdia yue 35S jall dallaal) Ban 5 (68 Sa jUnY) AW e cpetiid « Processes
Ll gas Bale) (S g



3.5 Process Scheduling Cont.

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

i

gueue header PCB- PCB-

head

tail ~ registers registers
hoad ___l_-\_/l

tail T
head T

tail I PCB, PCB,, PCBg
head “

PCB;

head -

@il

Figure 3.3 The ready queue and various I/O device queues



3.6 Scheduling Queues
® As processes enter the system, They are put into a job queue, which consists of

all processes in the system

A a0 S Al g it ) s A8 8 Lgaaa g oty alaill ) Processes ) Jaxi Laie
il 883 5a sall Processes

queue header PCB PCB >
ready head & =
e = \\regiﬁei/ T
PCB; PCB,., PCBg

wait head
queue tail

-

® Ready gueue: set of all processes residing in main memory, ready and waiting to
execute.
i S i o3 jala () 65 A 3 ,SIA) 8 48U Processes ) JS (e de sana ©

® Wait queues: set of processes waiting for an event (i.e. 1/0)
ALUS/5e) B Saal Hlains Sl Processes ) (i de saas



Scheduling Queues Cont.

® There are also other queues in the system. Such as list of processes, waiting for a
particular I/0O device is called a device queue.

O il 8 & Processes ) Adild Jie alaill 8 s Al queues ) (e Al g sl il @
.device queue = (p2= 1/O

mag head —

ta_f? tail ] - PCB, PCB,, PCBy
uni /— T =
disk head 1
PCBg
terminal head =2
unit O tail 11—




Scheduling Queues Cont.

e A new process is initially put in the ready queue. It waits there until it is selected

for execution, or is dispatched.

o ¢ aanll aaas s Gl Ll 8 ready queue @ s ab ddadl L saaall process )

Al ) oy

e Once the process is allocated the CPU start execute it, one of several events could

OCcCur:

N sy Qi CSar ¢ lalewm @LJS)A\ dalladll 3aa g Jos process dl anedi 3 s e

ready queue

Y

child
terminates

interrupt
occurs

T

A

I/0 wait queue < I/0 request
time slice
expired
child .
termination |« create child
wait queue pEOGES
interrupt | wait for an
wait queue interrupt

A

A

()__. Gl CalaaYy
> CPU ’



Scheduling Queues Cont.

a. The process could issue an 1/O request and then be placed in an 1/O queue.

b. The process could create a new sub-process and wait for the sub-process's

termination.

c. The process could be removed from the CPU, as a result of an interrupt, and be put

back in the ready queue.

1/0 queue & pasi &l zl,aY) [ JasY) cdb process Al Jaai of (Kay ||
laddi gty of A W ains g 3aa sub-process 1S processd! (Say
ready queue (b Lxas sale) s ¢ Aabalaall A ¢ 438 yall Aadaall 325 5 e process ) A1) (S .z

_—

ready queue

>>

I/0 wait queue

> CPU 5

A

A

I/0 request

T

child
terminates

interrupt
occurs

child
termination
wait queue

time slice
expired

interrupt
wait queue

create child
process

wait for an
interrupt

Figure 3.4 Queuing-diagram representation of process scheduling



3.7 Scheduling Levels

- A process migrates (U>k) among the various scheduling queues throughout its
life time. The operating system must select, for scheduling purposes,
processes from these queues in some fashion. The selection process is carried
out by the appropriate scheduler.

..l d&y ks queues J) (. processes J (dgaadl (@Y (Jadal) alai ks o) e e
Types of scheduler uliall dgsnall 48 o JLASY) Aales AT 23
1. Long-term scheduler (or job scheduler) (L.T.S.):
B selects which processes should be brought into the ready queue .
® Long-term scheduler is invoked infrequently (seconds, minutes) = (may be slow)
® The long-term scheduler controls the degree of multiprogramming

.ready queue J| J) Wlas) s Al processes Skasl
Wb 09 B Alillyg (38l Algi ) JuSia s (S LTS, J) slesin) o4
Basaial) daayd) day A L.T.S. ) asady

B Processes can be described as either: : L) b processes J) ciay (Sa

a. 1/O-bound process — spends more time /O s} b cdy i 1/O-bound process —f

doing I/O than computations. ,
J P callead) ¢pa saS)
b. CPU-bound process — spends more time !
: . Lal & i) céy a8 CPU-bound process -
doing computations. pettion Sl P 2

eililually



Scheduling Levels Cont.

2. Short-term scheduler (or CPU scheduler) (S.T.S)
B selects which process should be executed next and allocates CPU .

el CPU 1) Lasaddy dll ey LAiS iy process ) o gl jLasf o

m Sometimes the only scheduler in a system.
Al B aiagl) ga Jgaaall ca gl 30 O % Glal) Gary A o

m  Short-term scheduler is invoked frequently (milliseconds) = (must be fast).

o O3S O e AUy (milliseconds)  <ie (<8 S.T.DY) sledind iy

m |f all processes are I/O bound the ready queue will almost be empty and the
S.T.S will have little to do.

Ay Lyt &8 O ¢S ready queue ) ol 1/O bound g4 (e A processes J| Js cuils 13) o
. 4 alidll 5K S.T.S (sl (s

m If all processes are CPU-bound the waiting queue will almost be empty
. £ O sSuw waiting queue ) ol CPU-bound £95 (A processes J) JS cuils )3 o



Scheduling Levels Cont.

3. The Medium-Term Scheduler (M.T.S)

Some 0O.S such as time-sharing systems may

introduce an
additional intermediate level of scheduling.

gl e Ala) Jagie Gsiua time-sharing Jis Jaddll O.S Aalail Lany aali 8

B The key behind the M.T.S is that sometimes it can be advantageous to

remove processes from memory and thus to reduce the degree of
multiprogramming.

(s processes J) 4l Lial) (pa 05 O OSar Obal) (e uﬁﬂ\.\\ﬁ M.T.S ¢)gzlaall -
multlprogrammlng d) da s Julss ‘_,JLJLU 8,S))

m The process can be swapped out and swapped in later by the M.T.S
swapping may be necessary to improve the process mix.

M.T.S J& (e 3a¥ by 2 Process ! swapped out and swapped in Ja (Sa °
Process J! gije (pawaldl dujgpa O9S0 gY



Scheduling Levels Cont.

swap in partially executed } swap out
swapped-out processes

: ready queue :h(ﬁPU | » end
—
/0 /0 waiting
queues

Figure 3.5 Addition of medium-term scheduling to the queueing diagram.



3.8 Context Switch

A context switch occurs when the CPU switches from one process

to another. -
.Alg Process (i CPU J) Juad aic context switch  duaay o

process P, operating system process P,

m Switching the CPU to another interrupt or system call
process requires performing the executingjl/'
system to save the state of the 1 save state into PCB
current process and a load the saved : idle
state of the new process via a :

reload state from PCB,

context switch. 1

-idle interrupt or system call executing
Jal ki AT Process Il CPU ) Juas o | ~V
Jeaady 4dlall Process JI dlls Baa ) sl save state into PCB;
»= buaall Process (I dljgiaall Al : idle
context switch ’

reload state from PCB,

J
executing @‘¥

Figure 3.6 Diagram showing CPU switches from
process to process.




Context Switch Cont.

B When a context switch occurs, the kernel saves the context of the old
process in its PCB and loads the saved context of the new process
scheduled to run.

PCB 2 4audl) process JI 3w kernel J)kias ccontext switch cygas sic e
L Jpdill dgasall Saaall process Al dligiaal) context ) Jasyg gy daldll

m Context-switch speed varies from machine to machine, depending on the
memory speed, the number of registers that must be copied, and the
existence of special instructions (such as a single instruction to load or
store all registers).

Al eDlad) 2ue SJS\ME deyu Ao 13laie) AT ) Slga o ciontext switch dcju caliss o
(Wisad o cdland) guas Jraadl aaly Sla Jia) Aald cifilay) 3529y lgdast cua



3.9 Operations on Processes

m O.S that mange processes must be able to perform certain operation on and
with processes.

These include: create, destroy, suspend, resume, change a process
priority, block a process, wake up a process, dispatch a process, enable a
process to communicate with another process.

.Processes 1 xa g Ao dima dlac 2di o 508 O 6< o) was Processes ) W 0.8 -

dl Caad dﬂébﬂ‘ CaSal ‘dl.ug)! c-hl-a:\\ c&'m cz\:gbi R | x| cw ¢ dadd cgml: o3 MJ o
.processes

® System must provide mechanisms for:

® Process creation

® Process termination



Process Creation Cont.

m Creating a process involves many operations including: name a process, insert it in the
ready queue, determine the process initial priority, create the PCB and allocate the
process's initial resources.

: aldas B2 ol Creating Jd) o
PCB :liily Process .! adg¥) digls¥) waas cready queue A ga) , Process J) s
Process A i) lsall Gauadis

B A process may create a new process, the creating process is called the parent process
and the created process is called the child process.

Process «ald g) «liil il Process JI audg <Buia Process ¢Lail Process aghi 3 o
.child process . lgila a3 Allg parent process — Al

® \When a process creates a new process two possibilities exist in terms of execution:
a. The parent continues to execute concurrently with its children.
b. The parent waits until some or all of its children have terminated.
4l dua e (Ylaa) dagy Baaa Process  cLidh Process asi Laxie o

.children aa ¢l 2251 & parent J) jaiwy. | .
.children (< s (2 slgi) aly s parent J) i, o .



Process Creation Cont.

®m Resource sharing options
® Parent and children share all resources
® Children share subset of parent’ s resources

® Parent and child share no resources
lsall A L cilla
35!l 2aa Parent and children auldt, -1
Parent 4)iga (e 418 de gana 3 Children &y -2
)3« sl 4 Parent and child &jusy -3

systemd
pid =1

python
pid = 2808

sshd
pid = 3028

sshd
pid =3610

tcsh
pid = 4005

logind
pid = 8415
bash
pid = 8416
vim
pid = 9204




Process Termination

® A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call.

alldi e callayg , A 3gage Sl ol Blie JAT 14T ¢lgii) ic process J) Laii gily
exit () system call aladiuly 483s sl

« Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:
a. Child has exceeded allocated resources
b. Task assigned to child is no longer required
c. The parent is exiting and the operating systems does not allow a child
to continue if its parent terminates

. abort() system call aladiub children processes JI aii Parent J g5 a8

Al Ll Gl (an

A Laxciall 3jgall Ae Child ) jglai— |

Auslae 33 o) Child 1 disal) dagall.

parent slgi) a3 1) daglially child A praws ¥ Jsiill daiily parent ) z 4s —z



3.10 Cooperating Processes

® Processes executing within a system may be /ndependent or cooperating
Lglaia gl dliiuwa alail) Jata 322ial) Processes J) (i 8 e
® Aprocess is independent if it is:
:cuils 1)) A&l Process J) (g
&Y Processes Ju jila of sy .1
alail) B adial
2. Does not share data with any other .5l Process () o cilibad) laay .2
process.

1. Cannot affect or be affected by the other
processes executing in the system.

® A process is cooperating if itis: cils 13) Liglaia Process Jl cps& ®

1. Can affect or be affected by the other & s3iall sAY) Processes Ju jitw 4 Jig .1

processes executing in the system. . . - pldadd)
_ .gA) Process  (g) aa culibud) &L .2
2. Share data with any other process. :

® Reasons for cooperating processes:
® INFORMATION SHARING cilagleal) Jals
® COMPUTATION SPEEDUP «lLLuall B
® MODULARITY 4aail)
® CONVENIENCE &L'é\l\



3.11 Thread structure

® A thread sometimes called lightweight process (LWP) is a basic unit of
CPU utilization and consists of a program counter, a register set,and a
stack space. It shares with peer threads its code section, data section
and O.S resources such as open files and signals collectively known as a
task. A traditional or heavy weight process is equal to a task with one

thread.

lightweight process Glal ade Gl o3 Jay) jill (Alubus Jad) jlige yiiny @
bl dlae e s 5 43S yall dadleall 3aa g aladinY LauluY) 528 I(LWP)
el patall | el Lo jill ) pe e Ly (eaSe Aalis 5 Sl Ao sana g
el le 485 ymall GucLeall il JLIY 5 A gl L) Jia OS5 3 a5 il avid s
2al gl il dlee ol Aaga (N A sboe ALEN ) Llasl) PROCESS J) g



Thread structure Cont.

Threads can be in one of several states ready, blocked, running, or terminated.
Threads can create child threads if one thread is blocked another thread can run.
Unlike processes threads are not independent of one another, because all threads can

access in the task.

O i€y dagiia o il ad | 3 ) slae | 3ala | Vs i (e Baals & Threads oS3 of (S
Jers ) by AT Thread yass 28 38 Threadd) 2a) oS 13) Threads J) (sl (3la%) (Sa
Jsa sl LeiSa Threads S oY ¢ (anill lewans (e Asiua e (4585 Threads Processes J) <3Sl

Angall A



3.12. Interrupt Processing

An interrupt is an event that alters the sequence in which a processor
executes instructions. The H/W of C/S generates the interrupt. When an
interrupt occurs the following actions will be taken:

a. The O.S gains control.

b. The O.S saves the state of interrupted process in its PCB.

c. The O.S analyzes the interrupt and passes control to the appropriate
routine to handle the interrupt.

d. The interrupt handler routine processes the interrupt.(IHR)

e. The state of the interrupted process (or some other next process) is

restored.

f. The interrupted process (or some other next process) executes.

An interrupt may be specifically initiated by a running process (in which case it
Is often called a trap and said to be synchronous with the operation of the process).
Or it may be caused by some event that may or may not be related to the running

process. It is said to be asynchronous with the operation of the process.



3.13 Interrupt classes (types)

There are five interrupt classes. These are:

1. SVC (Supervisor call) interrupts

A running process that executes the SVC instruction such as initiates
these:

- I/O request. - Obtaining more storage. - Communicating with user
operator.

2. I/0 interrupts

There are initiated by the I/O H/W. such as:
- An I/O operation completes.

- An I/0O error occurs.

- When a device is made ready.

3. External interrupts:

These are caused by various events including:

- The expiration of a quantum (<) on an interrupting clock.
- Pressing of the console's interrupt key by the operator.

- Receipt of a signal from another processor.



Interrupt classes (types) Cont.

4. Restart interrupts:

These occur when the operator:

- Presses the console's restart bottom.

- When a restart signal processor instruction arrives from another
processor on a multi-processor system.

5. Program checks interrupt:

These are caused by many problems such as:

- Divide by zero.

- Arithmetic overflow.

- Data is in the wrong format.

- Attempt to execute invalid operation code.

- Attempt to reference a memory location beyond the limits of main
memory.

- Attempt to execute a privileged instruction.

- Attempt to reference a protected resource.






Mustansiriyah University
College of Education
Computers Science Department

Operating Systems Concepts
Chapter 4: CPU Scheduling

%JSJAJ\ aa.lh.d\ dda g 2\1349

Assist. Prof. Dr. Hesham Adnan ALABBASI

Operating System Concepts — 10t Edition 202 1-2022 Silberschatz, Galvin and Gagne ©2018



4.1. CPU Scheduling

8 [ ROPCRRY VS N B VUS> | IR VYO | R € 3| PN Iy REP R I PRE SPE SRR
.Multiprogramming

9o sbo b S Ui (Ideal) Jols (9 CPU JI ¢ Jannd | dslond] allas $°
WP NI BIE SIS BB (RO P

Wla g8 e JSiw c8g)l ldn pladeiwl Jglow (Multiprogramming JI ge®
Bolatwd! oo y0d oadl gaised $ldg wlEgY| g B Jaaidl 9 Processes JI asy
.CPUJ!

Process JI 3nal oug,alg wdg 8 5,513 8 Processes J| (o sosy blas¥l o0 ®
Il £95 09 oIS Waiting JIl dl> 8 J5u3g (Interrupt) dablis bale eoze ol I
pllas 3>Lé Request JI lin JLSiwd Faxs o) woed ,I/O Request ga Interrupt

342 yeiums 9 > Process JICPUJI asig ProcessJl sdn o CPUJI Juiicd!
ey



4.2. Process Concept CPU-1/0 Burst Cycle

g @31 Processes J| inols Je CPUJI dgus e sy
toad > (0 8590 (950 Process Jl luas  ®

CPU execution J/ -1

(Burst) sBa¥U emdg I/O wait -2

I/O burst Y=oy CPU burst opdld! o6l oo JoUS Processes J!
1388 g burst CPU Loy o5 (9

3t 5 i) ey CPU M Sl burst J) gy« [l ©

load store
add store
read from file

wait for 1/O

store increment
index
write to file

wait for 1/0O

load store
add store
read from file

wait for 1/O

~ CPU burst

1 1/0O burst

CPU burst

I/O burst

CPU burst

I/O burst



4.3.CPU Scheduler (Js3«)
e g (Idle) Jsedll g5 (8 CPU I sl Loic
A1 833 5 sall Processes I saa) b ol Jardil) alas
a5 Sl ready queue

short- &b (e 288 25 Process J oda Hlial) dec
CPU Scheduler ' term scheduler

A e 32a) s Process _kiab Scheduler 1 asa o
(ready queue ) ) 3 SIAll 833 e 5!l Processes
A CPU I aasy 5l paady g ¢ 200l 8 jala o 0S5 Al
. Process




4.5. Dispatcher(Jw )

e 3okl oz module 52 (Jw_4ll) Dispatcher I
short-term 4wl 5 s2as4ll Process ! CPU
Jeidd daleall 538 scheduler

1. Switching context.

2. Switching to user mode.
3. Jumping to the proper location in the user program to restart

that program.

s o 3le iul o5 43Y (S Lo g puad Japall (5585 O any @
Process | Jaasi dulac

sl &Y Dispatcher ) Jé (e (siuall gl Gjad o
Dispatch latency sxb Al Jiadi c 205 Process -



4.6. Scheduling Criteria 4 s2all julza

AU sA SR g3 By Basia gailad o ALAL(CPU) ) Agss clajlgd g siad

AT o cllaal) (e Baaly L Jauadl ) Adna

b Lo plaall Jadi (CPU) I Algas cilia i sa &l plaal) cy yital) ) 80 3

¢ aiall )2y 4 e CPU I £l&l :CPU ) (e 33é5uY) :CPU utilization .1

Bas g JOA ladaws JaiS) Al Processes ) 2 (4alY) : Throughput .2
e

s process il (3 jxiuall Cd ol 40aS :Turnaround time .3

DU Process ) 4pialy sl i gl 4paS Uy ¢ i Waiting time .4
. ready queue J #

A (J539) i (e 0 gunall 28 51 48 ;4ILY) <8 5 :Response time .5
A st J o) 238 o3 il ) Process

Scheduling Algorithm Optimization Criteria are: 4 saad) 4sa ) ) 63 (el yuilaa
B Max CPU utilization, Max throughput

B Min turnaround time, Min waiting time and Min response time



4.7 Scheduler Algorithms

(BTN RUPLEN | JUE VI FEN

sl o) glasiul Sy S=ar Preemptive 4dliul -1
Process (! auilly Jeisy) g dwsil) A8 Process ) dae
A

gladinl (Say ¥ i2e: Non-Preemptive 4dlivl pe -2
Y il JEny) 5 2aill 48 Process ) Jee syl

. Al Process

b1 JLaSY daaa <y I zlay Process JS :ABadla
Burst time b s



4.7.1. First- Come, First-Served (FCFS) Scheduling

288 eay Ll sem g il 3 (385 Ladl s Processes ) Jsa s (Ao Jalade) dditl) 24 ;4 ) )l &) Jae
Nonpreemptive 2 4wl sl oda g Jisudl 3 2asall J guagll i 3 (385 paY) A SN S J Y

Example 1: Suppose that the processes arrive at time 0, in the order:
P, , P, , P; Draw the Gantt chart and calculate the average waiting?

Processes Burst time
P1 24
P2 3
P3 3
P, P, P
0 24 27 30
= Waiting time: Waiting time= start time - arrival time -
p1=(0_0)=0 dﬂﬂ\&g—*ﬂ\\#&ﬁ\g=JwY‘MJ
P,=(24-0)=24
P;=(27-0)=27

= Average waiting time: (0 + 24 + 27)/3 = 17 Ms.



FCFS Scheduling (Cont.)

Example 2: Suppose that the processes arrive at time 0, in the order:
P, , P;, P, Draw the Gantt chart and calculate the average waiting?

Processes Burst time
P1 24
P2 3
P3 3
I:)2 P3 I:)1
0 3 6 30

= Waiting time:

0.0,
i n n

6
0
3
= Average waiting time: (6 + 0 + 3)/3 = 3 Ms.

Much better than previous case



FCFS Scheduling (Cont.)

Example 3: Draw the Gantt chart and calculate the average waiting
for the processes as in the given table ?

Processes Burst time  Arrival time Processes Bursttime  Arrival time
P1 24 2 P3 3 0
P2 3 5 P1 24 2
P3 3 0 P2 3 5
R P, P,
0 3 27 30

Waiting time: start time - arrival time -

= Waiting time:
P,=(3-2)=1
P,=(27-5)=22
P,=(0-0)=0

= Average waiting time: (1 + 22 + 0)/3 = (23/3)= 7.666 Ms.



4.7.2 Shortest-Job-First (SJF) Scheduling

Jaaiil) o Process | 48 jaiuy o3 < gll e lalade ) el &3 1 4 ) ) &l Jae
il fay 5 e DU J8Y1 e i 6l s Processes Al s s aié (Burst time)
P OsSE A )l sall s2a

Preemptive -1

.Non-preemptive -2

A g Ja gl AaY) aad) aed Gua — LY A SJF %

processes 4 ¢ dima de ganal



A- (SJF) Scheduling (Non-preemptive)

Example 1:Draw the Gantt chart and calculate the average
waiting for the processes as in the given table (all processes
arrived at time 0)?

. (0) <8l Luss & Slay processes -l g JGa) a8

Processes Burst time
P1 6
P2

8
P3 7
P4 3



A- (SJF) Scheduling (Non-preemptive)

Processes Burst time
P4 3
P1 6
P3 7
P2 8
P, P, P, P,
0 3 9 16

=  Waiting time:

P,=16

= Average waitingtime = (3 + 16 +9+0)/ 4 = 7 Ms.

24



(SJF) Scheduling (Non-preemptive) Cont.

= Now we add the concepts of varying arrival times (Js=ll < 5 dslal)
= Example 2:Draw the Gantt chart and calculate the average waiting
for the processes as in the given table?

Processes Arrival time Burst time

P1 0 6
P2 2 8
P3 3 7
P4 4 3

b e e A Burst time Jd oK gl s Ysay Process Js Jbial il ay -
LY LSl s o2ty yaiin g gl Gl 8 Jual sl a4 (sl 8) s AY) processes
.(Nonpreemptive)

&V Burst time J&) (e daull Jo&s Ua s AY) processes Jl gea J s g Jaadl s2usi JWS) die -
ey



(SJF) Scheduling (Non-preemptive) Cont.

Processes Arrival time Burst time
P1 0 6
P4 4 3
P3 3 7
P2 2 8
P, P P P,

16

24

Waiting time= start time - arrival time =

=  Waiting time:
P,=(0-0)=0
P,=(16-2)=14
P,=(9-3)=6
P,=(6-4)=2

= Average waitingtime =(0+ 14 + 6 + 2) /4 = 5.5 Ms.



B- (SJF) Scheduling (Preemptive) Cont.

Example 3: Draw the Gantt chart and calculate the average waiting
for the processes as in the given table?

Processes Arrival time Burst time

P1 0 87
P2 1 4
P3 2 9
P4 3 5

oY ahii Cagw MS, 1 ams Ysas (P1) Process Js) sl sl fay -
aia Jil 20y Jal o1l (P2) Process 4! Bust time

3 Processes U burst time J ksl ae Process I oeil il ey -
°J-‘3-‘-“L$-’-’d3\ ‘b\j ﬁMJthkSJMuMJﬁ\ cnilS



B- (SJF) Scheduling (Preemptive) Cont.

Processes Arrival time Burst time

P1 0 g7
P2 1 4
P3 2 9
P4 3 5
P.| P, P, P, P,
0 1 5 10 17 26

Waiting time= (start time - arrival time)+(2"d/3rd start — 1st/2nd execute time) =

=  Waiting time:
P,=[(0-0)+(10-1)]=9
P,=(1-1)=0
P;=(17-2)=15
P,=(5-3)=2

= Average waitingtime=(9+ 0+ 15+ 2)/4 = 6.5 Ms.



4.7.3 Priority Scheduling

(127-0) sl (aa Processes Al JSs dasi je zsia ol ) (e 5l (Lraa V) 450 6Y) o8, *
Ayl el sa g8

Ay ol Al A iras (Aeal) Aydll eV 3 Process Al I jaai CPU I *
Processes Jl s yi aid | Priority a8l 1aa e laldic ) ddull &5 ¢ dpe ), &) Jas *
sl o s (A h ol JB1) Ao W) ) (st sl (Aef) Ly saa) e 1 6Y) cava

P OsSE Aa ))) sall o2a

Preemptive -1

.Non-preemptive -2



A-Priority Scheduling (Non-preemptive)

= Example 1:Draw the Gantt chart and calculate the average waiting
for the processes as in the given table, All processes arrived at the
same time (time 0)?

Processes Burst time Priority Processes Burst time Priority
P1 10 3 P2 1 1
P2 1 1 P5 5 2
P3 2 4 P1 10 3
P4 1 5 P3 2 4
P5 5 2 P4 1 5
P, 2 P, P, |P,
o 1 6 16 18 19
=  Waiting time:
P,=6
P,=0
P,=16
P,=18
P5=1

Average waiting time = (6+0+16+18+1) / 5= 8.2 Ms.



Priority Scheduling (Non-preemptive) Cont.

= Example 2:Draw the Gantt chart and calculate the average waiting
for the processes as in the given table?

Processes Burst time Priority Arrival time

P1 10 3 0
P2 1 1 1
P3 2 4 2
P4 1 5 3
P5 5 2 4

Processes Burst time Priority Arrival time

P1 10 3 0
P2 1 1 1
P5 5 2 4
P3 2 4 2
P4 1 5 3



Priority Scheduling (Non-preemptive) Cont.

Processes Burst time Pridritv ArrivJItime

P1 10 J&
P2 1 1
P5 5 2
P3 2 4
P4 1 5
P P2 | Ps P3 P4
0 10 11 16 18 19

= Waiting time:
P,=1[(0-0)=0
P,=(10-1)=9
P,=(16-2)=14
P,=(18-3)=15
Ps=(11-4)=4

Average waiting time = (0+9+14+15+4) / 5 = 78.4 Ms.



B-Priority Scheduling (Preemptive)

= Example 3:Draw the Gantt chart and calculate the average waiting
for the processes as in the given table?

Processes  Burst time Priority Arrival time
P1 109 8 7 3 0
=7 [
) P2 1 1 1
= P3 2 4 2
——) P4 1 5 3
—) PS5 5 2 -
P1 | P2 | P1 P5 P1 P3 Pa

o
—
N
i
©0
—)

16. I 18 I19



Priority Scheduling (Preemptive)

Processes Burst time Priority Arrival time

P1 10 3 0

P2 1 1 1

P3 2 4 2

P4 1 5 3

P5 5 2 4
P1 | P2 | P1 P5 P1 P3 Pa
0 1 2 4 9 16. 18

= Waiting time:
P, = [(0-0)+(2-1)+(9-4)]=6
P,=(1-1)=0
P,=(16-2)=14
P,=(18-3)=15
P.=(4-4)=0

Average waiting time = (6+0+14+15+0) / 5 = 7 Ms.



4.7.4 Round Robin Scheduling (RR)

(time quantum q )b =35 CPU ) G5 (e 3y aay Ll Jasy Process S @
[PAPYS (& (.J Process ) <uilS 13} < glf Jaa Ga.as.u o) = .ms (100-10) O OsS Bale
. Ready queue Il ilg ) ciliai s Lelae £ liin) b 4ian

Example 1: Draw the Gantt chart and calculate the average waiting
for the processes as in the given table with time quantum g=4?

FH FE Fg FH
0 ‘I[> 4 ‘{]‘ 7 ‘I[’ 10 ‘I[ 14
Waiting time:
= [0+(10-4)]=6

,=4
;=7

0, 9,0
o

Processes Burst time
P1 24
P2 3
P3 3
FH FH FH Fi
18 22 26 30

The average waiting time is (6+4+7)/3 = 5.66 Ms.



Round Robin Scheduling (RR)Cont.

= Example: Draw the Gantt chart and calculate the average waiting

time for the processes as in the given table with time quantum

g=>5? :
Processes Burst time
P1 12
P2 8
P3 4
P4 10
P5 5
P P2 P3 | P4 Ps P1 P2 | P4 P
0 5 10 14 19 24 29 32 37 39

= Waiting time:
P, =[0+(24-5)+(37-29)]=27
P,=[(5+(29-10)]=24
P;=10
P,=[14+(32-19)=27
Ps=19

Average waiting time = (27+24+10+27+19) / 5 = 21.4 Ms.



Priority Scheduling with / Round-Robin

= Example: Draw the Gantt chart and calculate the average waiting
for the processes as in the given table with time quantum g=2,

using Priority and Round Robin algorithms?
Processes Burst time Priority

P1 4 3
) 53 Process 4 ddit o1 1Al O P9 . 5
A gluie o585 Al Processes I . 45t p3 g 5
. RR 6\553-“’\-.’ LQJ.-.‘S-“ (“-‘-‘ Z\-USJY‘ Lﬁ P4 7 1
P5 3 3
p Pl P, [P | PP, | P, | P P |P |P

4 3 3 3 5 3

Rl

= Calculate the average waiting time?



4.7.5 Multilevel Queue Scheduling

A Capiar Led oy ) OVl Aol cilae )l 52 (e sal A58 oL o3 e
Adliag Gile gaaa J) 4 e Processes

Foreground (or interactive) -1
Background (or batch) -2

B Ay ¢ dabise At @by Gldlie Processes ) (x cne sl (el
Foreground -l osSs 38 ¢ <y ) 48LaYU Aaliag 4l gas cilaldal) Ll o 55
.Foreground Processes ! l= 4351 s¥) Processes



Multilevel Queue Scheduling Cont.

Processes Jl gt aby Alaiie queues 32 A Ready queue ) A saall 4 ) 55 (,Ns’j .
A 4 5 <IN axs Jie ¢ Process Al gaibas jaay e 2l queue ) (e aal g ) 2l JSG
Process 4l ¢ 55 sl Priority

5l Foreground (ledsist) Leinnh i ¥ Ll &l cqueues I o Processes ) Jais Y o
Background

le dals 4 gaa 40 ) )l 52 queue IS e

RR 4wl 55 alaaills Foreground queue 4 s (Sa -

FCFS 4w ) 52 alasiuls Foreground Background s ai -

highest priority

l:*| system processes I:*
l———*l interactive processes I———*
IZZ’I interactive editing processes IZZ’
l:’| batch processes IZ’
':H student processes I:*

lowest priority

This setup has the advantage of low scheduling overhead, but it is inflexible.
o e ASd ¢ dalad) A gand) i8S JAIES A B Jae 4gal dlac ) 1A



4.7.6 Multilevel Feedback Queue Scheduling

A o JESYL Processes U Al saall o3 o o
Processes I Jad & 3 Sdll JiaB  queues
&2 CPU bursts uaibasl

dl il g e ASY St Process ) <ailS 1a) e
.J3 Priority s> queue ) L& 2l «CPU

Skl ) Process A Ji 2% a8 ¢ Jiallg e

33 queue & ,J8 Priority s queue &

.o

=1 Priority



Example of Multilevel Feedback Queue

* Three queues: — 8 quantum = 8
- @,— RR with time quantum 8ms.
- @Q, — RR time quantum 16ms
1 G ) ‘/ ~
- Qz — FCFS > quantum = 16
) pr
- FCFS

. queue @, )4 Processes Jl as 2ity ¥ ) scheduler J)asi

.queue Q]_ Lsa Processes J 37)9-13‘:3-\-&» 6&)\.5 gueue QO A U)S:‘ Ledie Jagd

queue @, S 13 kit queue Q, & Processes Il 2t ats ¢ Jiallyg
.0 )8 queue @



Example of Multilevel Feedback Queue Cont.

Scheduling

A new job enters queue Q, which is served —

quantum = 8

RR with quantum=8 Ms. If it does not finish

in 8 milliseconds, job is moved to queue Q,

quantum = 16

At Q, job is again served RR with additional
quantum=16 Ms. |If it still does not

complete, it is preempted and moved to
queue @,

FCFS

At queue @, processes are run on an FCFS

CPU Burst <= 8ms ) Process ¥ s saddy sl sl Jantidaa ) ) sall 03 Al saal) o JaaDU
_\.@J.«:L;.@_'G}c CPU Jd e 4c yw Process ) eda Jhanin &l

Ac yu 288 (o gus Lyl 24ms (e S8l 5 8ms (e SiS) ) Ui Al Processes ! e

~ M¥5 queue 2 (B 3 e 8 i Sl I e JSI ) zlas ) Processes I e

.FCFS



Example:

Draw the Gantt chart and find the A.W.T (Average Waiting Time) using Multilevel feedback
Scheduling? NOTE: all processes arrive at time 0.

Processes Burst time
P1 30
P2 8
P3 42
P4 20
P5 4
P6 14

:Jad)

time0. <8l (eds & oUsil) ) dlal 5 processes Il g

q=8 L)%« RR = 2% queue 0 J .1

1 & ian sl Al processes ! g=16 J)aw RR = 24 queue 1 ) .2
2 A lian i Wl Al processes ! FCFS = 3y queue 2 4.3



Example:

Queue O, =8 Pl P2 P3 P4 Ps P6
’ 0 3 16 24 32 36 a1
16 16 12 i
ueue 1, =16
Q » 4 Pl P3 P4 P6
A4 60 76 88 94
Queue 2, FCFS 6 18
Pl P3
94 100 118

A.W.T.: (start-arrival)

P1= 0+(44-8)+(94-60)=70 , P2=38,
, P5=32,

P4 =24+(76-32)=68

A.W.T = (70+8+76+68+32+80)/6= 334/6= 55.666ms.

P3=16+(60-24)+(100-76)=76
P6= 36+(88-44)=80




4.7.8 Algorithm Evaluation

* How to select CPU-scheduling algorithm for an OS?
1l Baa] A ) sAd) anaat Camiall (e (585 8
BT EURR TPRES WV | ¥ PN VPR R SN ' I S N I
CPU ) &n e el daad 5 L Wle, 4wyl
throughput 3 response time s utilization
pded Al Lpaal) maad Yol Lile aay ¢ Ay )lsd daadl e
da.q cu.uﬁ\ﬁ.o dAc J.),)\.:LA\MJS. u.u.u\&d\
A Y asll b asll cad CPU utilization ) s -
sl 5405 8 response time

Ao Gy V) sl ) Throughput ) adass -
Ahea) ae Lba iy Lugdldl 8 response time
.execution time




Example: Algorithm Evaluation

Assume that we have the workload shown. All five processes arrive
at time 0, in the order given, with the length of the CPU-burst time
given in milliseconds:

Processes Burst time
P1 10
P2 29
P3 3
P4 7
P5 12

Consider the FCFS, SJF (non-preemptive), and RR (quantum = 10
ms) scheduling algorithms for this set of processes. Which
algorithm would give the minimum average waiting time?



Processes Burst time

P1 10

P1 P2 P3 P4 PS P2 2

10 39 42 49 61 P3 3

P4 7

 FCFS, average waiting time is 28ms. PS5 12

Py

0 3 10 20 32 61
* Non-preemptive SFJ average waiting time is 13ms.

Py

0 10 20 23 30 40 50 52 61
* RR, average waiting time is 23m:s.

FCFS ) JUst Jara ciual ¢pa J8) JUSSH Jana aed SPF ) ) BaadlS
ugia gh RR ) U Jarag
SIF ) o Y cd g Jara o falais) 4 ) ga Juadl old Sl



End of Chapter 4

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018



Chapter Five

5.1. Process Synchronization
5.1.1. Background

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a logical
address space (that is, both code and data) or be allowed to share data only
through files or messages.

We've already seen that processes can execute concurrently or in parallel.
The role of process scheduling and has been described how the CPU scheduler
switches rapidly between processes to provide concurrent execution. This means
that one process may only partially complete execution before another process is
scheduled. In fact, a process may be interrupted at any point in its instruction
stream, and the processing core may be assigned to execute instructions of
another process.

e Concurrent access to shared data may result in data inconsistency

e Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes

0 32iiall 5 ,aY) processes A1 b il 5 55 of (S S process ) & 43 slaiall process I
35S e IS (o) 3_pilae dhaie ol sic daliue 4S L L) 43 lxid) process - (Say kil

il o i) A e dadh i) AS iy Ld lasdl ol (<l

Dl gan H Chuag iy g5l ol ol e JS0 LS (K processes ) 1 ol dxilly Ll il
20l 8 53 processes ! | G de a4 S jall dadlaall 3as 5 Al g3 Lot 4455 process

AT ddae A gaa (I8 Jad L ja ddill) JaiS5 38 3as) 5 process O (Hm 13 el i)

313 Cpmnd Ay g ¢ Lgy (alal) claglaill (3335 8 dkads ol 8 process I dxdalic ali a8 ¢ a8l )
A Al ciladdad 2] dalladl)

bl Gl axe 1 AS il L) L) el Sl el (535 5%

45 glaiall process A ?L".\‘d\ ) lacal il i) sl e blaal) (allaiy*



5.1.2. Race Condition

If there are several processes access and manipulate the same data concurrently and the outcome of
the execution depends on the particular order in which the access takes place, is called a race
condition. To guard against the race condition above, we need to ensure that only one process at a
time can be manipulating the variable counter. To make such a guarantee, we require that the
processes be synchronized in some way.

Situations such as the one just described occur frequently in operating systems as different parts of
the system manipulate resources. Furthermore, as we have emphasized in earlier chapters, the
growing importance of multicore systems has brought an increased emphasis on developing
multithreaded applications. In such applications, several threads which are quite possibly sharing
data are running in parallel on different processing cores. Clearly we want any changes that result

from such activities not to interfere with one another.

Al il g aaly <y & ULl il 8 e Sl processes J (e wanll Jsa s ollia S 1))

glisi ¢ oSled Blandl Ala e leall Bl oy canrs el gam s dainy (53 (ame i i o ey

¢ Qlaall 138 Jie apiil | e alae gllad of (a5 3e JS b Ll 32a0 5 process of e SU )
e 43y )l processes J) 4l e bl

O Ailida o) jal oo D cua Qi) dadail b Sie (G 6ill 48 g gl Alladl e Vs il
31 il) Baneia adaill 3yl Yiall draa W) il ¢ Al Jpeaill 8 LaST LS ¢ @y e 350 o)) sally aldaill
el Jadd o ¢ Gldpdaill o3a Jia (A dadl Al G plige Badatie Glindat el e 38 5l 83k 5 )
oAl Aalee oo e o)Al bl 3K jLae Jaa sl e Al dal A8l & plige (e

el Lpany e Aadsl oda Jia (e Aail <l s ol Jalam Vi 5 Wl a4l

5.1.3. The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so called critical-section
problem. Consider a system consisting of n processes {P0O, P1, ..., Pn—1}. Each process has a
segment of code, called a critical section, in which the process may be changing common variables,
updating a table, writing a file, and so on. The important feature of the system is that, when one

process is executing in its critical section, no other process is allowed to execute in its critical section.



That is, no two processes are executing in their critical sections at the same time. The critical section
problem is to design a protocol that the processes can use to cooperate. Each process must request
permission to enter its critical section. The section of code implementing this request is the entry
section. The critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process Pi is shown in Figure 5.1. The entry
section and exit section are enclosed in boxes to highlight these important segments of code.

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can be

executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter their
critical sections, then only those processes that are not executing in their remainder sections can
participate in deciding which will enter its critical section next, and this selection cannot be

postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical section

and before that request is granted.

O 05 b @) el andll Ao ey e A38le JIA (e process ) ol 35 g8 Lk fag
il o ¢ Aamapall Gl (1 ¢ 3a e process OS5 {PO, P1, ..., Pn-1 Sl n
o) Loy ¢ Cile A4Sy ¢ Jsna Cuaaty ¢ dasldl) <l puaial s process ) as 8 Cua ¢ zall
& 2 ey Y ¢ zoall leand L 32a) 5 process il b Levie 43l & aUaill degall 5 ) el
8 Aaall Lagaludl 3 processes ) (e ol ds & Y 4l gl 7z el leand 8 s AT process
Osball asladivl processes Al (S JsSsig g panal (8 Aajall sl ASSe eSS i )l
o ) 1aa 3as ) s ) Gladail) il = sl Leadd J 530 B3 process JS callai of sy
el JSell Heday (AL and sa Al A SI m g Al sl moall el a8 JA0Y) Al
s guall Jasluall oy yo (8 m 5 A sl g Jsaall and (el b 5.1 JSEN 8 dad sal processd

Aune ) Glalaill e daledl o 52 s e



A A Ll & o s ) vl A0S Jal)

processes ) il (Say N ¢« z all leadd & 2% process Pi <ulS 13 Jabia) slegind) 1
A all el B (g A

Lealedl Jaa) 8 processes) Lam we iy zoall leasd (8 process sl 2 ol ol 13) a0l 2
a3 8 @ L o Ky dgidiall aldl & s 4 Yl processesd) | el L Mied ¢ da jall
e e dal LAY 13 Jaals oS Vs ¢ elld any o all Leand Jaans e 6l

lealil J 32 (5 ,2Y) processesll e zeans Sl @l jall 222d paad o as aa gy Y 2508 3
(k) 138 xie i 5 7 jall Lgand Jsaa) Wl dolee process A1 adi f x da all



Mustansiriayah University
Collage of Education
Computers Science Department

foPeRaTIN
SYSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Chapter Six Fourth Class

Deadlock |

Assist. Prof. Dr. Hesham Adnan ALABBASI

2021-2022



6.1.Deadlock

- In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a waiting state.

A sl (e 2sme 222 e processes il M ¢ padaiall das pll Ay (s

process J ol ¢ gl Gy 83 ji gl e ) gall CulS 1Y) € ) gall —iprocesses
oty Al JAaos

- Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation
Is called a deadlock.

Lliay) &5 ik o sall oY ¢ Lella s of Lhan 3l process J oSar Y ¢ ghal) (e 4
Deadlock Al o3 i s Al waiting processes ibaul g e

- operating systems typically do not provide deadlock-prevention facilities, and it
remains the responsibility of programmers to ensure that they design deadlock-
free programs.

aranai (pa SN Gaae jall A s5use (e GBus ¢« Deadlockd) gie @ilgus Bale Jaril) Akl Jig Y .
. Deadlockd) (» A& zal y



6.1.1. System Model

« System consists of a finite number of resources

* Resource types R1, R2,...,Rm
CPU cycles, memory space, 1/O devices
« Each resource type Ri has Wi instances.

e A process must request a resource before using it and must

release the resource after using it.
Lealadind amy L ) m o) a5 Lgwladinal Ji 3 ) sl process ) sy o) sy @

e A process may request as many resources as it requires to carry
out its designated task. The number of resources requested may
not exceed the total number of resources available in the
system.

e Holah ¥ Eusy Ll a0l Aagall 2a8 5 ) g0 (e 44) ZUsS e processd) ki 3 e
_el.laﬂ\ 2 Aaliall 3 ) gall 22 e A sthall 3 ) gall



System Model Cont.

® Under the normal mode of operation, a process may utilize a resource in only
the following sequence:

1. Request: The process requests the resource. If the request cannot be granted
Immediately (for example, if the resource is being used by another process), then

the requesting process must wait until it can acquire the resource.

a8 3 gall G ¢ JEA Jue (Ae) Hall Je llall mia oSa ¥ S 1Y) 2 54l process Al i e
e Sl s cllally cuwld il process ki o) s ¢ (oAl process Jd e alaaiay)
Asadl e peanll

2. Use: The process can operate on the resource (for example, if the resource is

a printer, the process can print on the printer).

process Jdl akivia | printer s 3 sall S 13 JES ) 3 sall (ah$3.ui process Jl phis o
. Printer J o2y le dcldall

3. Release: The process releases the resource.

2yl ) s processdl e



To illustrate a deadlocked state:

>

>

consider a system with three CD R/W drives. Suppose each of three
processes holds one of these CD R/W drives.

If each process Is now requesting another drive, the three processes will
be in a deadlocked state.

Each is waiting for the event “CD RW Iis released,” which can be
caused only by one of the other waiting processes. This example
Illustrates a deadlock involving the same resource type.

: Deadlockd Ui zua il @

AW CD R/ W, Gl il @S e e aal g2y 50 4 alail) -
.processes &N s & 5ill 134

S jas aaf a5l aadiy G e process IS ol () -

CDR/W =l

J OsSid ¢ Al Gal il & jaa V) (lll process JS il 1) -
.Deadlock 4w & &3 processes

Laid sy o (S sl s "CD RW st &8 daall sy Leia JS -

Ala JUiall 138 a5 . s_AYI waiting processes s e
A5l g 5 ol Gy il Deadlock




>

Deadlocks may also involve different resource types.

For example, consider a system with one printer, and
one DVD drive.

Suppose that process Pi is holding the DVD and process
Pj is holding the printer.

If Pi requests the printer and Pj requests the DVD drive,
a deadlock occurs.

) sall (e dilizg g il Lad Deadlockd) Jads 8 e

2 DVD  al il & jaa g sasl g dagda 4y aUaill ¢ Jiall Juws e
s DVD e dhuay 5l 2335 process Pi of o=l
Axgtall dliay ed:.w,g S Process Pj

Gany (DVD =l il & jae Pj il g dxglhall Pj il 1)
.Deadlock



6.2. Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied
up (1<), preventing other jobs from starting

6.2.1. Necessary Conditions

Deadlock can arise if four conditions hold simultaneously (<) (. ).

1. Mutual exclusion: At least one resource must be held in a
non-sharable mode; that is, only one process at a time can
use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has
been released.

¢ e ¢ AS LAl QB e a8 BV e aal g 0 ser Baliia W) Cany rdabial) lagin)
Ay sal process culk 1) 3 sall aladivg ol (Sar 3 e JS 4 Ll s2a) 5 process
A sall ety s (Wl process A Jaali casd ¢ 3 sl

2. Hold and wait: a process holding at least one resource
and waiting to acquire additional resources held by other
processes

e Jsanl) lais g J8Y1 e 13a) 513 )50 ey process ) ;jUaiy) s el
s AY processes Jl L cld ddlial 3 ) g



Deadlock Characterization Cont.

3. No preemption: Resources cannot be preempted; that
is, @ resource can be released only by the process holding it,
after that process has completed its task.

OMA e V) 2y sall L pad (S Y 4l (gl ¢ 2l sall (5 Unial) Lt (S Y 23l 2a 0 Y
eiage process 4l e JaSi (jf any ¢ Lo Liias Al process -

4. Circular wait: There exists a set {PO, P1, ..., Pn} of
waiting processes, such that PO is waiting for a resource held
by P1, P1 is waiting for a resource held by P2, ...., Pn-1is
waiting for a resource held by Pn, and Pn is waiting for a
resource held by PO.

AP,y Py, ..., P} waiting processes I ¢ ic seas VI o aa s
Pn @é[““JJJ}"JL-'-” Pn—l ,P247"£L""“;’—’JJ"’J£’-'-”M; P1 / P1 4 ey ‘-’J}"’Jé’-'-'-'m; PO
Py s 050 JELP,



6.2.2. Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a
system resource-allocation graph consists of:

®m This graph consists of a set of vertices V and a set of edges E.

« The set of vertices V is partitioned into two different types of
nodes:
P = {Py, P, ..., P,}, the set consisting of all the processes in the
system

R = {Ry, R, ..., R,}, the set consisting of all resource types in
the system

- Request edge: A directed edge from process Pi to resource
type Rj is denoted by Pi — Rj; it signifies that process Pi, has
requested an instance of resource type Rj, and is currently
waiting for that resource.

« Assignment edge : edge from resource type Rj to process
Pi is denoted by Rj — Pi; it signifies that an instance of

resource type Rj has been allocated to process Pi



\\e represent each process #J, as a circle ()

N

*\\e represent each resource type Ay as a rectangle. Since resource
type R/ may have more than one instance, we represent each such
Instance as a dot within the rectangle. @

*Note that a request edge points to only the rectangle ~J,

ON

Rij
«An assignment edge must also designate one of the dots in the rectangle (instance).

™
L Pi T e |
x.,,_____,_x-’

Rj

e When process P, requests an instance of resource type Aj, a request edge is inserted in
the resource-allocation graph. When this request can be fulfilled, the request edge is
Instantaneously transformed to an assignment edge.

e \When the process no longer needs access to the resource, it releases the resource; as a

result, the assignment edge is deleted.



RESOURCE ALLOCATION GRAPH EXAMPLE

The resource-allocation graph shown in the figure 6.1 depicts the following situation
® ThesetsP, R, and E:

-P={PI,P2,P3} R, R,

-R={RI,R2 R3, R4}

N\ N\
-E={PI —RI, P2 — R3} request edges /_(
P, ( Po e
={Rl — P2, R2— P2, R2 — PI, R3 —P3 } assignment edges K
® Resource instances: /
é

\e

- One instance of resource type R ° .
R [ ]
- Two instances of resource type R2 ° -
4
- One instance of resource type R3 :
Figure 6.1

- Three instances of resource type R4

® Process states:

- Process P1 is holding ( assignment) an instance of resource type R2 and is waiting (request)for an
instance of resource type R1.

- Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of R3.

- Process P3 is holding an instance of R3.



Given the definition of a resource-allocation graph, it can
be shown that, if the graph contains no cycles, then no
process in the system is deadlocked. If the graph does
contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a
cycle implies that a deadlock has occurred. Each process
involved in the cycle is deadlocked.

If each resource type has several instances, then a cycle

does not necessarily imply that a deadlock has occurred.

-

AN

0
K

\.J"

R>

3las M Sy odle | JSEN (pa
. Deadlock Jl dls 8 Uil 8 process <lla 4S5 Gl ¢ cycles e am)ll 5 5ia o1 1) -
.Deadlock &t (5 36 ¢ cycles (Ao s sing an ) IS 1Y)

S A el cycled) Gl ¢« one instance sl il g Al 3 ) gall (e g g8 JSI IS 1) -
.Deadlock ! «lay cycle J' # &L process JS .Deadlocked

Gigan 3 )9 palh J=3 Y cycled) (U ¢ several instances &Y sac 3 ) gall (e & 58 JSI IS 1Y) -

Deadlock



EXAMPLE 1: To illustrate this concept, we return to
the resource-allocation graph depicted in Figure 6.1.

« Suppose that process P3 requests an instance of resource
type R2. Since no resource instance is currently available, a
request edge P3 — R2 is added to the graph (Figure 6.2)

A Y ol lay . R2 2 sall (e aal g 23e bkl process P3 A o) g i
4ilal pid s Al (PROCESSES (3¢ Jsaae) 2 sall 138 daalll o34 3
6.2 J&ll ) 8 LS request edge P3 — R2

At this point, two minimal cycles exist in the system:

1- P1 -»R1— P2 -R3— P3 —-R2— P1

2. P2 -R3— P3 —»-R2— P2

Processes P1, P2, and P3 are Deadlocked.

e Process P2 is waiting for the resource R3, which is
held by process P3.

e Process P3 is waiting for either process P1 or process
P2 to release resource R2.

e In addition, process P1 is waiting for process P2 to

release resource R1.

\./
R =
R,
Figure 6.1
A,
\
A\
R, =




EXAMPLE 2

 Now consider the resource-allocation graph

in Figure 6.3. In this example, we also o

have a cycle: P1 - R1—- P3 -R2—- P1 —
« However, there is no deadlock. Observe

that process P4 may release its instance P

of resource type R2. That resource can

then be allocated to P3, breaking the R,

cycle. N,

ol Sas process P4 1 o) baY Deadlock as s Y La *—

S aid P3 A amn O (See 2 sall 1 5 ) R2 2 5all ) jad
.cycle 4

BASIC FACTS

« If graph contains no cycles = no deadlock.

« If graph contains a cycle =
- if only one instance per resource type, then deadlock.
- if several instances per resource type, possibility of
deadlock



6.3 METHODS FOR HANDLING DEADLOCKS

« We can deal with the deadlock problem in one of
three ways:
1. Ensuring that the system will never enter a
deadlock state.
- Deadlock prevention (&)
- Deadlock avoidance («ixd)
2. Allow the system to enter a deadlock state and then
recover.
3. Ignore the problem and pretend that deadlocks
never occur in the system.

ol 3kl saaly deadlockd) e ae Jalaill L
. deadlockd A 1) Jaay o allaall o) (e oSl 1
deadlock JI x -
deadlock ) sl -
Adallas 5 deadlock J) Al J i aUaill ~ladd) 2
il 1ol sy Y deadlock I b ey ASadl Jalsi 3




1- To ensure that deadlocks never occur, the system can use either:
- a deadlock prevention or

- a deadlock avoidance scheme.

» Deadlock prevention provides a set of methods to ensure that at
least one of the necessary conditions cannot hold. These methods
prevent deadlocks by constraining how requests for resources can

be made.

el Agare Glaal @)kl (e de seas deadlock ) Als xia 85
a3k e deadlock ) Gkl sda adad, 4y )5 piall gl (e JBY)
) sall Sl 40385 488



« Deadlock avoidance requires that the operating system be given additional
Information in advance concerning which resources a process will request
and use during its lifetime. With this additional knowledge, the operating
system can decide for each request whether or not the process should wait.

ol sall oliy Gate dlia) Glaglee Juadidll alas cUae) Deadlock I caiad callay

Aol Sy ¢ Adlay) 48 prall o3 JOA (e, Ll 358 JOIA process ) Leeadiud o Leadlata
Y ool laiv process 4l <uils 13 L b JS1 0 o Jaeal)

To decide whether the current request can be satisfied or must be delayed, the
system must consider the resources currently available, the resources currently

allocated to each process, and the future requests and releases of each process.

daliall o)) sall el yo aldaill e oy ¢ aliali o sl callall 4l Sy oIS 13 Le aaa)
JO Adaiadl &l jlaayly lllhlly cprocess JN Wa dacaddll 3jlgldly ¢ Wl
. process



If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm, then a deadlock situation may arise. In this environment, the
system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from the

deadlock (if a deadlock has indeed occurred).

A Gaany o Ly s ¢ deadlock ) Ala cuind ol aie 3k (e 5] adiing Y laill (1S 13
deadlock

1l )l sa i alaill Sy ¢ Al oda

deadlock 1 1) deas 38 S 13 Lo ypasl oUsil) Alls asdi -

.(deadlock ) J=dly & 13)) deadlock ) da sl Asdled Ayl say -

In the absence of algorithms to detect and recover from deadlocks, we may
arrive at a situation in which the system is in a deadlocked state yet has no way of
recognizing what has happened.

oy S daad 8 ¢ lgia bl s deadlock J) ¥l e oSSl e ) A 2 5a g pe Al
oa b Je o il 35 jha aa 8 Y (Sl deadlock ) Als A aUaill 4 ) £,



6.4. DEADLOCK PREVENTION

m For a deadlock to occur, each of the four necessary conditions must hold. By
ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock. We elaborate on this approach by examining each of the
four necessary conditions separately.

e 45 el A W) D il e S 83 s ¢ deadlock A Gsaa Jad o
J\ k_\jhcmmc&_mmu\u&.\y.kjﬂ\ o&wdﬁ&”é& \h\j&wu\wﬁu\ d)\AuAj
. deadloc
radia JRI Ay )5 pall A )Y hag a8l e IS Gand JBA e el 138 a6 6 gl

® 6.4.1 MUTUAL EXCLUSION: only one process at a time can use a resource.
The mutual-exclusion condition must hold for non-sharable resources. For
example, a printer cannot be simultaneously shared by several processes. Sharable
resources, in contrast, do not require mutually exclusive access and thus cannot be
Involved in a deadlock. In general, however, we cannot prevent deadlocks by
denying the mutual-exclusion condition, because some resources are essentially

non-sharable.
LJM UJS.‘ u\ ay JJ}J\ ?‘M‘ 3 ya dS uﬁ Lss oa;\j process J uSA.\ ddl.u.d\ Al.uu\!\

A< )Ll adylall JJ\)AMMY‘&SC)AU'A:\EJ‘LAL}_ processes s J3A (e aalg g A
Yoo @l pay¢ale JS8, deadlock @l of e ¥ UL Jaliial) 5 panll Jsall
ALE e 3 gdl (gamy oY ¢ Jolid) sleilY) bapd by JMA e deadlock J pie LiSay

bl ISy S HLaal



6.4.2. Hold and Wait: To ensure that the hold-and-wait condition,
never occurs in the system, we must guarantee that, whenever a
process requests a resource, it does not hold any other resources.

- One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution.

- An alternative protocol allows a process to request resources
only when it has none. A process may request some resources and
use them. Before it can request any additional resources, it must
release all the resources that it is currently allocated.

¢ 4l Gaai of cang ¢ Haill 813 sy Y « Hold and Wait Lo of e sl
A 2 5e (gl Ladiad ¥ Lgild « e 250 process il LS

g panadiy by ol process JS ¢ lhhy adasiul (Say aaly J S 0 -
8wl ey (S8 Laa ) g

AT e ) 4l 06 Y Laie L 3 ) sall Gl process Ul ey dan J S5 0 -
Adlia) 2l 50 o) bl (o (S G 8| Lgeddiud g 0 ) sall ars process Jl llad S8
M lpauads 25 Al 3l gell pies o 7l AY) 4o g

L_i\Jm\A.AM ‘f oJ};}d\ aliay| cc‘)& 415 Da



6.4.3.NO PREEMPTION

® The third necessary condition for deadlocks is that there is no preemption of
resources that have already been allocated. To ensure that this condition does
not hold, we can use the following protocol.

® If a process is holding some resources and requests another resource that cannot be
Immediately allocated to it, then all resources currently being held are released.

® The released resources (preempted) are added to the list of resources for which the
process Is waiting.

® The process will be restarted only when it can regain (s\=s)its old resources, as
well as the new ones that it is requesting.

A S 3 gall (adad) (3liin g Yol a2l Gkl ez Al g5 pall SIEN L LAl
A O sl aladid WSy ¢ Japal) 13 ) peind ade hal, Jadlls Lgasads

¢ sl o L aanads (Sa Y AT 1350 callaig o) sall (e Jadiad process ) cwilS 13) -
Gls e Biiaad) ) sall muen et alid

. process 4 la ylais Al o ) gall 40 ) (Aakasivall) ez jaall 3 ) gall csliad -

AaLaYU ¢ doall Lo ) s (&l _iul) Balain e ST Ladie Jasd process A Jaeds 3ale) alua-
Lol 3l 5anal a5 sl



6.4.4. CIRCULAR WAIT: One way to ensure that this condition never holds is to
Impose (u=_%9) a total ordering of all resource types and require that each process
requests resources in an increasing order of enumeration
3l sall £ 53l aaand JalS g 5 (a8 o 1) LAl 13 ) paiul axe (e 2SUD (k) gas)
Al )l Yie a6 o) 3 e bl process JS (e ki g
To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We assign to each
resource type a unique integer number, which allows us to compare two resources and to
determine whether one precedes another in our ordering.

) Gaani s 3 ) sal) (e g 58 S0 ) sl £l ) Ao saan A R={RI, R2, ..., RM} s i ¢ e sill
.a,—\,-ﬁ)ﬂ\g)sié%mhiQ\S\h)\.«g&j&Jwi\jJ&qmwmc 1L 8 BWoasa

We define a one-to-one function ~- R—N, where N is the set of natural numbers. For example, if

the set of resource types R includes tape drives, disk drives, and printers, then the function F might be

defined as follows:
13) ¢ JE Jasa e dmudall dacY) de gana * N &ua ¢ (F: R — N ) one-to-one 4y iy j=3 24

1058 F A b el g el 81 S ja g Ak i) S jan Gaaii R o)) sall ) 5l de gana cuils
F (tape drive) = 1
F (disk drive) = 5
F (printer) = 12



We can now consider the following protocol to prevent deadlocks: Each process can request
resources only in an increasing order of enumeration. That is, a process can initially request any number
of instances of a resource type —say, A/ After that, the process can request instances of resource type Ry if
and only if ~/(Rj) > F(R/ ). For example, using the function defined previously, a process that wants to use
the tape drive and printer at the same time must first request the tape drive and then request the printer. .

had 30 gall il process J8 ¢S : deadlocks ) ¥ aial Gl J S gl Akl oY) Wik
Ri Jic = 2)5all £ 51 SV (e 220 (6] G Gllad ol (Sai process ) of ), il G &l e i i

F (Rj)> F (Ri) oS 13 Jad5 13 R a5all & 53 e <Die process 1 callas of (Say ¢ @lld aay
b dxdall g dda Y & jaa aladiul a5 Sl process ) ¢ Guae sasall dads ol aladiuly ¢ JUEa)) Jass e
Aalal) lla o5 Y 5l A i) @ jae el (o any gl

Alternatively, we can require that a process requesting an instance of resource type Af
must have released any resources /7such that ~(Ri ) > F(RJ). Note also that if several instances

of the same resource type are needed, a single request for all of them must be issued.
If these two protocols are used, then the circular-wait condition cannot hold

@l gl 8 0 o g Rj 254l g 58 (e e allay 31 process ) of sass of WSy ¢ @lly e Yo,
o e GV e ) dalall Al 8 4l Wyl Y | F (Ri) = F (Rj) 058 Gy Ridie 2 50
Lren agd 2aly Qb jlaa) oy ¢ 2 )sall g 50

circular-wait 3 dad e of oSan D ¢l Sgig 5l (pda aladin) &3 1))



6.5. Deadlock Avoidance

m Deadlock avoidance requires that the system has some additional a prior
information available

Aaliall (Apsall) L8l Cile sleall (any ol ool i 50 of Deadlock ) cuisd (il

« Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need

(e aaliag 8 e o5 ==Yl 2l e process IS ol of saila &Y g ) zAsaill llaty
JJ\}AS\
« The deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that there can never be a

circular-wait condition
Al a5 e laal 3 ) gall anads Al BSwlin Deadlock ) crisd dae ) ) & (asdl
circular-wait & s

® Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes
=Y aall g ¢ daiadall g daliall o)) sall 22 YA (e 3l sall Ganadd Al iy jod Al
processes -l (x sl



6.5.1. Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system is in a

safe state only if there exists a safe sequence.

S (@aﬁij\ all As) process JS ol sl anads aUaill (el (IS 1) A Al 55
Al s 8 Uil (58, ¢ Al IS8 | Deadlock ) crind apdaing alaill gy Cuay daae Juslus
el st Sl 1S 13) Jasa

® The system is in a safe state if there exist a sequence of processes <P/, P2, .., Pn>
of all the processes in the systems such that for each Pi, the resource requests
that Pi, can still request, can be satisfied by the currently available resources plus
the resources held by all Pj, with j <'i.

<Pn «.. P2 P1 > processesd! Jdului ¢llia oIS 13) duaf Uls 8 alaill )
AUl 8 LS s dadal) 8 processes -l gl

Adls 38 giall 3 ) sall (e Ll (Say (Al 5 3 ) 50 allay A o) aakaiey process PiJl Js
J <i oSl e process Pj A L cluay o Jagiag ) 3 ) gall ) A3l



6.5.1. Safe State Cont.

That is:
- If P, resource needs are not immediately available, then P,
can wait until all P, have finished

Pj A1 S e o) () (Pi) S Ll cand Ll 5 8 5 P Lgalind il o 5f sl oS5 6 1

- When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

LS 5 ey Lelae 20 Lgaling 31 35} gall o J peaall pdatus Pj )| Pj A o Latic
(ot s Ll 3 saaall o)) sall pan ) a3

- When P; terminates, P; ., can obtain its needed resources,
and so on

il iy g Lealing il 3l sall e J geanl) golsind Pj+1 ) Pj ) i Ladie



Basic Facts

If a system Is in a safe state =» no deadlock

If a system is in unsafe state =» possibly of deadlock
e Not all unsafe states are deadlocks.

unsafe
deadlock

ﬁ




To illustrate, Consider a system with 12 magnetic tape drives and 3 processes
(P, P, and P)

Process £, requires 10 tape drives, (require= gl 5 allay)

Process 2, may need as many as 4 tape drives, and

Process 2, may need up to 9 tape drives.

Suppose that, at time 7,
- Process P, is holding 5 tape drives, (holding= clua sl Laiiay)
- Process #, is holding 2 tape drives, and
- Process ~, is holding 2 tape drives.

(Thus, there are 3 free tape drives.)

Available resources = total resources in the system — total holding resources
=12-9=3

Current Needs= Maximum Needs- Allocation.

Maximum Needs Current Needs Allocation
(requires) (holding)
I s s

- - z z
3 7 z




Maximum Needs Current Needs Allocation
(requires) (holding)
B - s s

- - z z
- 7 z

- At time t,, the system is in a safe state.
The sequence < P,, P, P,> satisfies the safety condition.

- Process P, can immediately be allocated all its tape drives
(because the system still have 3 available tape drives) and then
return them (the system will then have (3+2) = 5 available

tape drives;(2+2+1)=5.

- Then process P, can get all its tape drives and return them (the
system will then have (5+5) =10 available tape drives);

- And finally process P, can get all its tape drives and return them
(the system will then have all 12 tape drives available).



A system can go from a safe state to an unsafe state.

- Suppose that, at time t,, process P, requests and is allocated
one more tape drive.

Maximum Needs Current Needs Allocation

(requires) (holding)

New requests

The system is no longer in a safe state.

At this point, only process P,, can be allocated all its tape drives. When
it returns them, the system will have only 4 available tape drives. Since
process P,, is allocated 5 tape drives, but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process P, must

wait. Similarly, process P, may request an additional 6 tape drives and
have to wait, resulting in a deadlock.

L Laie 5 tape drives 2wl (e 4alial b Ld paady o) (S process P1 ) ks ¢ ddaaill 238 2ic
tape 5 4 sawis S process PO J i dalic tape drives (» 4 2Uaill sal o Saw o
axl 15k 5 tape drives ¢« 5 b 4é tape drives o« 10 il aaS zUiay 41 drives
bsie e 4 Lay, tape drives ¢« 6 , process P2 ) calli a8 ¢ Jiallyy lawn of sy ¢ la i g

. Deadlock ! &igas ) (g2 Laa ¢ Ui aile and



AVOIDANCE ALGORITHMS

.5 &5 DEADLOCK ) Cigos caia’ a3l 5

SINGLE INSTANCE OF A RESOURCETYPE -1

dra ) ) 52 aladiil 258 3 ) gall £ 63 (e 2a) g (Als) e e (g giag aUaill IS
RESOURCE-ALLOCATION GRAPH

MULTIPLE INSTANCES OF A RESOURCETYPE -2

da )l A o)Al 21 3 ) gall & gl Badata (Clla) OO Je (g giag alaill IS 1A
USE THE BANKER’S ALGORITHM



6.5.2. Resource-Allocation Graph Algorithm

If we have a resource-allocation system with only one instance of each
resource type, we can use a variant of the resource-allocation graph for
deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim
edge
resource- Jueiul liSad ¢ 35 sall g5l (e g 53 JSILa8 2a) 5 Jiie aa 2 ) sall anads oUai Lual IS 13 @
.Deadlock ' 4~ uxil allocation graph
o edge ) e wa g ahaiul L38 Wl Layd & ) gssignment edges ) ) Al
.Claim edge

Claim edge Pr — Ryindicates that process P/, may request resource Ay, at some
time in the future.

ey 3R 3 sall allai 88 ¢ process A7l ol S e Claim edge PF— R ®
REIANON|

This edge resembles a request edge in direction, but is represented in the graph by a
dashed line.

e ol Ll a1 8 Ll o (KD o3 L request edge ) suaall edge ) eda auis



6.5.2. Resource-Allocation Graph Algorithm Cont.

1- When process Pi requests resource Rj, the claim edge Pi — Rj is
converted to a request edge.

request edge J' claim edge J! Jisa3 sié Rif jaas Pl il lavie -]

2- Similarly, when a resource Rj is released by Pi, the assignment edge
Rj — Pi is reconverted to a claim edge Pi ---> Rj.

claim ) assignment edge Jisisilel aid Pjdl Jd Ge R saadd)l sy sl Gl Lexie 5 -
edge

« Suppose that process Ar requests resource RJ/. The request can be granted only if
converting the request edge A/ — Ry to an assignment edge R/ — Pr does not

result in the formation of a cycle in the resource-allocation graph.

If no cycle exists, then the allocation of the resource will leave the system in a safe
state. If a cycle is found, then the allocation will put the system in an unsafe state.

A Qisad xie cycle ziv ol 1)) Jaid (bl xie ¢Sy | Ri 2 sall ki process Pi - of gl
sl s )l & assignment edge Rf — Pi S request edge Pi — Rj

Q4 ¢ cycle e sl 2313 safe Al A aUaill & jis 3 ) gall Ganadd Gl ¢ cycle 29 pae Al 3
.unsafe state dla & 2Uaill acass anadidl)



EXAMPLE: To illustrate this algorithm, we consider the resource-allocation
graph of Figure 6.5.

R,
Figure 6.5 Resource-allocation graph for
deadlock avoidance 2 =

H>

Suppose that P, requests R,. Although R2 is currently free, we cannot
allocate it to P2, since this action will create a cycle in the graph (Figure
6.6). A cycle indicates that the system is in an unsafe state.

If P1 requests R2, and P2 requests R1, then a deadlock will occur

=z

&) Aanadt WSy Y (Jsane e )ulls e R2 o) (e a2 ) (e s R2 3550 i P2V Gl (2a il
o G cycle J i L (6.6 JSEl) bl sl & cycle sbis) el aY) 13s o Cus (P2 )
.unsafe dx & .Uaill

deadlock ) ¢aapidcR1 290 llai p2 3 R2 350 P1 ) udla 1)

R,

Figure 6.6 An unsafe state in a resource- <Fz/ -
allocation graph e =




AVOIDANCE ALGORITHMS
BANKER'S ALGORITHM

® Used with Multiple instances of resources

® Each process must a priori claim maximum use

® When a process requests a resource it may have to wait

® When a process gets all its resources it must return them in a finite

amount of time

Badaia (Yla) CBbia (s 9a8 Al 3 ) gall pa paddid

i) 3l sl (e () alaaiu¥) e e gl o) Process JS e cay
oty J) st 8 L2 Process ikl Ladie

ey by A Lawmd o sy ¢ bl se JS e Process ) diasi Leaic
5 gdaa



Data Structures for the Banker’s Algorithm
Banker 4w )l sa Sy Al

Let 7= number of processes, and /m = number of resources types.
AN dr )Y (e (5SH AdSell o)) sl 222 Jiim 5, processes ) sxe Jiain

® Available: A vector of length m indicates the number of available resources

of each type. If Available [j] = k, there are k instances of resource type Rj are

available.

OS 13 g 55 IS8 sl o)) sall dac I iy m Al sk 4nia (LA 55Y) @ Available ©
Rj oradll (@¥ls) @Bl sxe e k 358 Jaa 132 Available [j] = k

® Max: An n ¥ m matrix defines the maximum demand of each
process. If Max[i][j] =k, then process Pi may request at most k
instances of resource type R j.

) sdl e process S oY) cllall oy X M (O« 4d ghias [ (=f)) Max ©
oo K 22 Qe e il L process Pi -l o) s 13 Max[i][j] =k os 1 @



Data Structures for the Banker’s Algorithm Cont.

® Allocation: An n X m matrix defines the number of resources of each type

currently allocated to each process. If Allocation[i][j] = k, then process Pi is

currently allocated k instances of resource type R j.

& 5 JS e 3y saaall ) sall 230 N i p X m( 48 gias () sassll)Allocation ©
< o)l A sy process PiJ o) S 13 Allocation[i][j] = k oS 13 .process JS
Rj Ssall ¥ (3 e Alal

® Need: An n X m matrix indicates the remaining resource need of each

process. If Need([i][j] equals k, then process Pi may need k more instances of
resource type R j to complete its task.

Rj 2 sall &Yl Gk A zlsy Loy process Pi -/ o/ = 138 Need[i][j] = k /5 .process

Need [i][j] = Max [i][j] — Allocation [i][j]



Data Structures for the Banker’s Algorithm

® To simplify the presentation of the banker’s algorithm, we next establish some

notation.

® Let X and Y be vectors of length n. We say that X <Y if and only if X[i] < Y[i]

foralli= 1, 2,..., n.
® For example,if X =(1,7,3,2) and Y = (0,3,2,1), then Y < X. In addition, Y < X if
Y<Xand Y # X
e )l oAl Jiiadl) Jasss @

X[i] <Y[i] Vs hasd i X <Y o Jodll pubricad, n Jsblls (rgaio Lt X and Y =i ©
i=1,2,..nJ

L YS XY =(0,3,2,1)5if X = (1,7,3,2) IS : JisS ©



Data Structures for the Banker’s Algorithm

® We can treat each row in the matrices Allocation and Need as vectors and

refer to them as Allocation i and Need i .

= el dh 4nia agdl e Allocation and Need <lé séiadll 8 coa S dlalae aadainsi @
.Need i. sAllocation i

® The vector Allocation i specifies the resources currently allocated to process
Pi
process Pi. Ui jsaadll 4/ sl JI _pds Allocation i 43l ©

® The vector Need i specifies the additional resources that process Pi may still

request to complete its task.

Alae JLSY aaliag Ay process Pi =L ‘jS.a',vé,.'U/ @MY/JJM&,—//M Need i +>idll ®



6.5.3.1. Safety Algorithm

We can now present the algorithm for finding out whether or not a system is in a safe

state. This algorithm can be described, as follows:
Unsafe s Safe dlla . alaill o)) Ja alag) 8 adiind 4 ) ) sall o2a

|. Let Work and Finish be vectors of length m and n, respectively. Initialize:

1oLl oS A1 ¥ agad | n Jshll Finish 4axiall s | m Jshall Work 4siall Wal (i il
Work = Available and
Finish [i] = false fori=0,1,...,n- |

2. Find an i such that both:
(@) Finish [i] = false
(b) Need ; < Work
If no such i exists, go to step 4

3. Work = Work + Allocation,
Finish[i] = true
go to step 2

4.1If Finish [i] = true for all i, then the system is in a safe state



6.5.3.2. Resource-Request Algorithm

We now describe the algorithm which determines if requests can be safely granted.
Y ) alea (S5 process ! (o A gall Callal) IS A0 Lasd aaiil dia ) ) gad) oa PRERIW
Let Request i be the request vector for process ~r.

If Request i [J] == k, then process PJ, wants k instances of resource type AYJ.

When a request for resources is made by process Pi the following actions are taken:
-aalldl)l <l gladldl a8 Pj 2 process ! (w2 g4l clb dlita 5 &S Ladie

5 If Request i < Need i, go to step 2. Otherwise, raise an error condition, since the process has exceeded its
maximum claim.“The request can’t be guaranty, because the process has exceeded its maximum

claim”

2 If Request i <= Available, go to step 3. Otherwise, Pi must wait, since the resources are not available.
“The request can’t be guaranty, because the process request is grater than available resources”
l. Pretend to allocated the requested resources to process Pi by modifying the state as follows:

Available = Available — Request i
Allocation i= Allocation i + Request i

Need i = Need i- Request i

oIf safe = the resources are allocated to P;
oIf unsafe = P; must wait, and the old resource-allocation state is

restored



Example of Banker’s Algorithm

A system with:

-5 processes P, through P,;

-3 resource types (A, B, C).

-A (10 instances), B (5 instances), and C (7 instances)

Snapshot at time T,:
# Bl Process | Allocation | Max | Available

ABC ABC ABC
A B C
nE PO 010 753 332
7 D5 Pl 200 322
332 P2 302 902

P3 21 | 222

P4 002 433

Answer the following questions using banker algorithm:

|. What is the content of the need matrix?

2. Is the system in safe state or unsafe state! if it safe show the sequences with
details?

3. If process P1 request one additional instance of resource type A and two

instances of resource type C, so Request i = (1,0,2). can the result be granted
Immediately?



Example (Cont.)

| - The content of the matrix Need is defined to be Max — Allocation
Max - Allocation p/tiiul Need 44 sdadll oy oL

PO = 753 -010=1743,P1 = 322-200= 122, ... mm

532

Need AB
A PO 0l
P, 743
Lz P, 122
P, 600 Pl 20
P, 011l
P, 43| P2 30
P3 21
2- The system is in a safe state since if we follow this < P4 00

< P,, P;, P, P,, P,>
< P;, Py, P, P,, P>
Which satisfies safety criteria
Al 8 odle ) Juludll Lagl 131 Safe dla 8 HUaill
« We can't start with PO, because it needs (7 4 3) which is greater than
available resources (3 2 2).

(3 2 2) s 85l 2 sall e 58I 8 5 (7 4 3) 2)se A zling 4 PO alainly ead) audains Y o



e So, we start with P1 because Need (1 2 2)<= Available (332), P1 get
its need resources, start execute, after finished return back all
resources (new available + allocation(Pi))

Available (332) st 5l yual o 5 (1 2 2) ) zbsy4Y Process P11 jas oAl o

413 e CilS Al 3l gall pants o) sall aen aa o bl aay 38 g g Lealing ) 3 ) sall o Jiand @

oLl 8 WS New available gsSé aill 45 58 giall daasll o)) gall aa

So, the New available = 332

200 +

e We can't select P2 because Need (6 0 0) > new available (5 3 2).
new available ¢« sl (6 0 0) 4 Need JI oY process P2 Jl il pkiwi ¥ Lay) o
(53 2)
.new available (5 3 2) ¢t 5 ,aal (0 1 1) 4 Needd ¥ P3 il o
For this we select P3 because Need (0 1 1)<= new available (5 3 2).
P3 get its need resources, start execute, after finished return back all
resources (new available + allocation(Pi))
13 gana CulS Al o) gall pants 3 ) gall paen aa g bl day s oy 5 Lealing Al o)) sall e Joasnd
ol A4 LS New available ¢sSsé aUaill 83 8 siall daasl) 3 ) gall ae
So, the New available = 532
211 +



e Then select P4 because Need (4 3 1)<= new available (7 4 3).

new available (7 4 3) g5 ) Jaal (4 3 1) A Need J ¥ P4 L e
P4 get its need resources, start execute, after finished return back all
resources (new available + allocation(Pi))
13 ane ilS Al 3l gall pants ) sall aren a2l 2ay Ddnil) oy g Lealing A 3 ))sall e Juand

ol A LS New available osSé aUaill 83 8 siall daasl) 3 ) gall aa
So, the New available = 743
002+

e Then select P2 because Need (6 0 0)<= new available (7 4 5).

new available (7 4 5) g5t 5 ol (6 0 0)d Need J ¥ P2 U o
e P2 get its need resources, start execute, after finished return back

all resources (new available + allocation(Pi)).
13 gane CilS Al 3l gall pants ) sall aren a2l aay Ddnil) fay g Lealing Al o)) sall o Juand
oLl 4 LS New available oS pUaill 83 8 siall dagaall 3 ) gall xa
So, the New available = 745
302+

104 7
PY‘JJJA\UQMJJMB)MM#PY\&AﬁMJJﬁ&J&\ﬁ@J\meMY\



e Then select PO because Need (7 4 3)<= new available (10 4 7).
new available (10 4 7) sk 5l jaal (743) 4 Need J oY PO uas
e PO get its need resources, start execute, after finished return back
all resources (new available + allocation(Pi)).
13 ) gana CilS Al 3l gall pants ) sall aen aa sl 2ay 2wl T g Lealing A o)) sall o Joand
Lol & LS New available ¢S aUaill a5 8 siall dagadll o)) sall 2a

So, the New available = 10 4
01

. Jull Sequence Jdedadll ol e KU a1y Jall g ) llia g3 hadll s3gas @
: <P,, P;, P, P,, Py>
Safe Al A Uall) o) W g8y



Jall alaaMa o
C DAY sall e Al e b)) peay dnan ald AV (e 3 ke daiaS 0 ) g0 JS o) A aaall ie Ui oY) -1
AL ) Gl e el Galiag 38 @M processes ) adiil Julad (e SiS) elllia ¢ Sy 38 -2

) sall JS g sana o gt () oy Ll JLaST amy gl 3 ) sall 3aa s pma Jall ) (g U -3

Jalb el Jad WUsill 4 gvailable 38 sl 3 ) processes -l ) ) saaall

Note: No. of all resources in the system (Allocation for all resources +

Available)
010
200
302 +
211
002
processes Jl JS1s jsaadll 3l gl ¢ seaa 7 2 5
+
332
1057

Jadl sy AUl 853 o gall 2 ) sall (ALl 3G Silaa ga g



3- If process P1 request one additional instance of resource type A
and two instances of resource type C, so Request i = (1,0,2).
can the result be granted immediately?

. To decide whether the request of 27 (1,0,2) can be immediately granted, we
use Resource-Request Algorithm in section 6.5.3.2.

Aokl 4l ppkais da (1,0,2) (o 4xdlbal 2) 56 process Pi - calks 131 :JGall (e Gl calladl)

0.5.3.2 GLSAM (_g 33 g gall MAJJU;J\ c_\l\s ,Y ‘:‘ J uﬁ
. To decide whether the request of 27 (1,0,2) can be immediately granted, we
use Resource-Request Algorithm in section 6.5.3.2.

1-If Request i < Need i, so P1 request (1,0,2) < (1,2,2) which

is True. The go to step 2. If it is false raise an error condition,

“the process has exceeded its maximum claim”

VAL Al ey WAy 2 B ghall ) JEnY) Jié Need ) (w sl GS 13 Qllall asd
. Need JI ¢« »S request J oY bkl 4l Say



2- Check that Request < Available (that is, (1,0,2) < (3,3,2)
= true, and allocated the requested resources to process P1
by modifying the state as follows:
i (available) 2l sell (e 8 siall (55l 5l sraal YIS 1A Qllall (o o3 400 3 gladl)
b LS Uil Al Guant oy 5 Lealla il 3 ) gall selac|

 Available = Available - Request 1
« Allocation i= Allocation i + Request I

* Need i = Need i- Request i
<P,, P5, P, Py, P;>

__Process | Allocation | _Need | ___Available

ABC ABC ABC
PO 010 743 230(332-102)
745+010=755

Pl 302200+ 102) 020 230+

302

532
P2 302 600 755+302=1057
P3 211 011 532+211=743
P4 002 431 743+002=745

oJle) il Hadl) Jae 2my 22al)



We must determine whether this new system state is safe.
To do so, we execute our safety algorithm and find that the

sequence <P,, P;, P,, P,, P,> satisfies the safety requirement.
Hence, we can immediately grant the request of process P;.

A )l sa dd adiuis Unsafe sl Safe oo suaall alaill Al 1S 13) Lad dass o) cany
gl Sllad b <Py, P, Py, Po, Po> duldll o e S Safety
lelh Al process -l sunaall o ) sall ia gl yd o sl audatin Gl

1. Can request for (3,3,0) by P4 be granted?
2. Can request for (0,2,0) by PO be granted?



6.6. Deadlock Detection (—iS)

® If a system does not employ either a deadlock-prevention or a
deadlock avoidance algorithm, then a deadlock situation may

OCCUY.
Deadlock ) i sf aia cilia )yl sa calagy o)y Y HUaill (S 131 ©
. Deadlock Jl Cuasy () (Saad

® In this environment, the system may provide:

- Detection algorithm: An algorithm that examines the state of the

system to determine whether a deadlock has occurred

- Recovery scheme: An algorithm to recover from the deadlock.
1A O pUaill (Sad Dl o3 4 €
a5 3 Lagh apantl ol Al e i HEENESSUEBRERE - Wi
. Deadlock
. Deadlock I (s« 3a_iu¥) 5l (alaill 48, )l -



6.6.1. Single Instance of Each Resource Type
e Baal gdlls e (o giad Al ) gall
o |f all resources have only a single instance, then we can define a deadlock
detection algorithm that uses a variant of the resource-allocation graph, called

a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

A Al CadS A A ot e ¢ s aaly e o (5 5iad o)) sall gea cailS 1))
wait-for graph <= resource-allocation graph ¢« 1 i 22338 Al Deadlock
.edges Ly nodes Al Gk e ade Juass

® More precisely, an edge from Pito Pjin a wait-for graph indicates that process
Pris waiting for process £fto release a resource that ~7 needs.
sk process Pi -l o) ) wait-for graph ) & Pj &l Pi o= edged) s ¢ (33 ety ©
Pi. 4aliad (g3l o 5all 33UY process Pj -l
® An edge Pi — Pjexists in a wait-for graph if and only if the corresponding
resource allocation graph contains two edges P/ — Rqgand Rqg — PJfor some

resource Rq .

resource allocation ) (\S 13) Lasé 5 13) wait-for graph 4 2 Pi — Pj edge 2> 5 ©
RQ. 25!l J=2dRg — Pj sPi —> Rg edges I ¢ ol e s 5is graph contains



Single Instance of Each Resource Type Cont.

In Figure 6.8, we present a resource-allocation graph and the corresponding wait-for graph.

@
: | |~ R,
. - -
&0 Pe @) P
T L= \PE s
] (P )
[ G L =
/s Hs
(@) (b)
Resource-Allocation Graph Corresponding wait-for graph

® As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait
for graph and periodically invoke an algorithm that searches for a cycle in the
graph.

e s sisy wait-for graph ) oS 13) Lasd 5 13) oUsill Deadlock ) as g ¢ Gobad) A LS @
ele xiul g wait-for graph Jb Llaay) ) Usill ~Uss ¢ Deadlock 41 LSy | gycle
el S cycle A e Gagd s S A )l s



0.0.Z2. Several Instances oT a Resource Type
CV Bae (5 giad Al 3 ) gl
In a system with several instances of resources types, A deadlock detection

algorithm that is applicable to such a system is used. This algorithm employs
several time-varying data structures that are similar to those used in the banker's

algorithm.
4gilie Gy dS\_\A LJLJQ\_\AJJU;]\ XY _JJ\)A\ e YA Bae L_A:; ng.mq L;"JM ?M\ @em
banker 4 4 )5
® Available. A vector of length /m indicates the number of available resources of each

type
& 8 JS (b giall 2yl sall 2ae )yl m J shall 48
® Allocation.” An nx m matrix defines the number of resources of each type
currently allocated to each process
processdﬂgdeCpSJM\ lsall e A il X 77 A8 siias

® Request. An nx mmatrix indicates the current request of each process. If Request
[711/] = & then process A is requesting A more instances of resource type R,

O 2 1 Request [/1[f] = k, <l oS 131, process JS qlla M) judd 7 x /77 48 sian
.Rj s &Y (e k s process Pi -l



Detection Algorithm

The detection algorithm described here simply investigates every possible

allocation sequence for the processes that remain to be completed.

1. Let Workand Finishbe vectors of length /77and 7, respectively. Initialize
ola) oS 30 gY) g | n Jshll Finish 4asidl s | m J shll Work 4aiall Lial (i il
Work = available and
Finishfi] = false fori=0, 1, ..., n— 1.
If Allocation # 0, then and Finishfi]= false, otherwise Finishfi]= true.
2. Find an index i such that both
a. Finishfi] ==false
b. Need i < Work
If no such i exists, go to step 4.
3. Work = Work + Allocation i
Finishfi] = true
Go to step 2.

4. If Finishfi] = truesome i, 0 <7 <n then the system is in a deadlocked state. Moreover, if
Finishfi] == false, then process Pris deadlocked



Example of Deadlock detection

A system with:

-5 processes P, through P,;

-3 resource types (A, B, C).

-A (7 instances), B (2 instances), and C (6 instances)

Suppose that, at time T,, we have the following resource-allocation state:

ABC ABC ABC
PO 010 000 000
Pl 200 202
P2 302 000
P3 211 100
P4 002 002

O A idS Qb g Sa <P P, Py Py P> delaiill daxy ) gadl 8 L : ddasDle
Y sl Deadlock 4l s A ¢ 5Ss AUl



Example of Deadlock detection Cont.
-Jadl
ki (0 0 0) 41 Request ) o S| Process PO < lasié <P Py, Py, Py, P> dudul) Jaa3 Laxie
A5 ) same CulS ) 3 ) gl oy 2l gl dmy g Aal 558 sall 3 ) sally i)
New available=Available + Allocation

010=000+010
eleiil aay g 492l 5 A giall 3 ) gally 2l aadainnd (0 0 0) A Request A o) aa36 | Process P2 dudedlly jais
Al B ) sane ClS Al 3 ) gall aa yy ail)
New available=Available + Allocation

312=010+302

g 9 24l Jaw g Lealiag ) o)) gall elac) 238 (1 0 0) A Request ) o) 1aa36 | Process P3 dedadlly jaiusd
Mﬂajjmg"_uls‘fj\ JJ\JAS\ c;‘)g.l..)s.\.\j\ Lt
New available=Available + Allocation

523=312+211

2y 9 28I oy g Lealiag ) o)) gall elac) 238 (2 0 2) A Request ) o) 1aa36 | Process P1 dededll jais
@AXBJJM.A&_L?\SL;\S\ JJ\;AM P aiil) ¢ lgil
New available=Available + Allocation

723=523+200

Ay g 2L aw g Lealing Al o)) gall clac) 23 (0 0 2) 4 Request 2! o) 135 | Process P4 dedadlly et
@ﬂﬁ)p&.ﬂ&&m JJ\}AM & aiil) ¢ lgil
New available=Available + Allocation

725=723+002



Example of Deadlock detection Cont.

We claim that the system is not in a deadlocked state. Indeed, If we
execute our algorithm, we will find that the sequence <P, P,, P, P,
P,> results in Finishfi]= true for all /.

. Deadlock J) Al & pd s aUaill
) o ale iy <Py, Py, Py, Py, P> ebasl) () an Age 3 5) i) 2 o3 13
| ISV Finishfi] = true



Example Cont.

Suppose now that process P, makes one additional request for an instance
of type C (0 0 1). The Request matrix is modified as follows:

A 4858008 (0 0 1) e Caysall (e sl g8 50 ALl il Jee process P, I o GY) s
oLl LS &aat e e Request

,Deadlock I} s & Jaxy o oUaill Lia ABC
3 sall e mualy P1 AL (8 g ) e a8l PO 000
4 ¢S ) New available = (0 1 0)xaall Pl 202
GSa¥ (00 1) s» process P2 ! Request P2 001
B el Jaay Gl g Lealiag (Al 2 ) sall yd P3 100

. process P2 1l ;& Deadlock 1 4lls P4 002

We claim that the system is now deadlocked. Although we can
reclaim the resources held by process P,, the number of available
resources IS not sufficient to fulfill the requests of the other
processes.

Thus, a deadlock exists, consisting of processes P,, P,, P, and P,.



6.7. Recovery from Deadlock

* When a detection algorithm determines that a deadlock exists, several
alternatives are available.
- One possibility is to inform the operator that a deadlock has occurred and to
let the operator deal with the deadlock manually.
- Another possibility is to let the system recover from the deadlock
automatically.
Jilw sae 865 (Deadlock s 2y oSl A ) 52 23a5 Ladie
s g Jaleilly Jadiall Zlandl s Deadlock  Alla cgany Jadiall $30) 58 c¥Laia¥) aal-
. Lsyu Deadlock
Wil Deadlock J) s (e ilailly alaill ~Leadl 3 Jias o Al 44 ellia-

® There are two options for breaking a deadlock (methods).
1. One is simply to abort one or more processes to break the circular wait.
2. The other is to preempt some resources from one or more of the deadlocked
RABCESSES. Deadlock J) ,=S1 LA i @
.circular wait ) & &I gl s2a) 5 process (abort) jsiad dblun s aaly 1

) Led &as Al processes ) (o« ST gl 3aal g (e 2 ) sall zany (L) &LL.E:LJ & ANy 2
Deadlock



6.7.1.Process termination

e To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

1. Abort all deadlocked processes.
2. Abort one process at a time until the deadlock cycle is eliminated.

¢ Oty phall WIS 4 oy jlal) gaa) aadins « process Jdwal o) s sk e Deadlock ) 41y
Deadlock ) L Sas Al processes J! daadiall o ) gall aaas aUaill 3 iy

. Deadlock J Ld Gas Al processes ) g Jeal gl sl 1

. Deadlock 1 5,53 (e paladll oy a3 0 JS 4 B2a) s process Jwal sl jlad 2

e Aborting a process may not be easy. If the process was in the midst of updating a
file, terminating it will leave that file in an incorrect state. Similarly, if the
process was in the midst of printing data on a printer, the system must reset the
printer to a correct state before printing the next job.

OB ¢ calo Enaat aad 4 process Al il 1) g ¢SS Y M8 process Jwal gl jad e
GUly mnd & process Al il 1Y) ¢ Jiadlg damia pe Alls 8 calal) 12 & yiu selgd)
delils 8 dagaall DAl L) dadlal) e sale) pUaill e i ¢ dadlall e de Lkl
Aalul) dagd)



6.7.1. Process termination Cont.

If the partial termination method is used, then we must determine which deadlocked
process (or processes) should be terminated. This determination is a policy decision,
similar to CPU-scheduling decisions.

cll b caas Al processes sl process el wass lale cand ¢ A 3all olesY) 43y 5k aladtial 513 e
43S yall Aallaall Ban 5 Al gaa l a1 Ao ¢ a8 o8 sl 138 e 5led) &3 o s Deadlock

Many factors may affect which process is chosen, including:
oelgdl (a2l process ) JLis) e Sis jplas 3ac clilia o
1. What the priority of the process is ?
2. How long the process has computed and how much longer the process will compute
before completing its designated task
3. How many and what types of resources the process has used (for example, whether the
resources are simple to preempt)
4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated
6. Whether the process is interactive or batch






	CH1 Education
	CH2 Education
	CH3 Education
	CH4_Education
	CH5 Education
	CH6 Education

