
31

4. Chapter Four

4.1. CPU Scheduling

In a single-processor system, only one process can run at a time. Others must wait

until the CPU is free and can be rescheduled. The objective of multiprogramming is to

have some process running at all times, to maximize CPU utilization. The idea is

relatively simple. A process is executed until it must wait, typically for the completion

of some I/O request. In a simple computer system, the CPU then just sits idle. All this

waiting time is wasted; no useful work is accomplished. With multiprogramming, we

try to use this time productively. Several processes are kept in memory at one time.

When one process has to wait, the operating system takes the CPU away from that

process and gives the CPU to another process. This pattern continues. Every time one

process has to wait, another process can take over use of the CPU. Scheduling of this

kind is a fundamental operating-system function. Almost all computer resources are

scheduled before use. The CPU is, of course, one of the primary computer resources.

Thus, its scheduling is central to operating-system design.

4.2. CPU–I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:

process execution consists of a cycle of CPU execution and I/O wait. Processes

alternate between these two states. Process execution begins with a CPU burst. That

is followed by an I/O burst, which is followed by another CPU burst, then another

I/O burst, and so on. Eventually, the final CPU burst ends with a system request to

terminate execution (Figure 4.1).

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

32

Figure 4-1 Alternating sequence of CPU and I/O bursts

4.3. CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the

processes in the ready queue to be executed. The selection process is carried out by

the short-term scheduler, or CPU scheduler. The scheduler selects a process from

the processes in memory that are ready to execute and allocates the CPU to that

process. Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.

As we shall see when we consider the various scheduling algorithms, a ready queue

can be implemented as a FIFO queue, a priority queue, a tree, or simply an unordered

linked list. Conceptually, however, all the processes in the ready queue are lined up

waiting for a chance to run on the CPU. The records in the queues are generally

process control blocks (PCBs) of the processes.

4.4. Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example,

as the result of an I/O request or an invocation of wait() for the termination of a child

process)

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

33

2. When a process switches from the running state to the ready state (for example,

when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at

completion of I/O)

4. When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new

process (if one exists in the ready queue) must be selected for execution. There is a

choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say that

the scheduling scheme is nonpreemptive or cooperative. Otherwise, it is

preemptive. Under nonpreemptive scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases the CPU either by terminating or

by switching to the waiting state.

Cooperative scheduling is the only method that can be used on certain hardware

platforms, because it does not require the special hardware (for example, a timer)

needed for preemptive scheduling. Unfortunately, preemptive scheduling can result in

race conditions when data are shared among several processes. Consider the case of

two processes that share data. While one process is updating the data, it is preempted

so that the second process can run. The second process then tries to read the data,

which are in an inconsistent state.

4.5. Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher.

The dispatcher is the module that gives control of the CPU to the process selected by

the short-term scheduler. This function involves the following:

• Switching context.

• Switching to user mode.

• Jumping to the proper location in the user program to restart that program.

The dispatcher should be as fast as possible, since it is invoked during every

process switch. The time it takes for the dispatcher to stop one process and start

another running is known as the dispatch latency.

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

34

4.6. Scheduling Criteria

Different CPU-scheduling algorithms have different properties, and the choice of a

particular algorithm may favour one class of processes over another. In choosing

which algorithm to use in a particular situation, we must consider the properties of the

various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algorithms.

Which characteristics are used for comparison can make a substantial difference in

which algorithm is judged to be best. The criteria include the following:

• CPU utilization. We want to keep the CPU as busy as possible. Conceptually, CPU

utilization can range from 0 to 100 percent. In a real system, it should range from 40

percent (for a lightly loaded system) to 90 percent (for a heavily loaded system).

• Throughput. If the CPU is busy executing processes, then work is being done. One

measure of work is the number of processes that are completed per time unit, called

throughput. For long processes, this ratemay be one process per hour; for short

transactions, it may be ten processes per second.

• Turnaround time. From the point of view of a particular process, the important

criterion is how long it takes to execute that process. The interval from the time of

submission of a process to the time of completion is the turnaround time. Turnaround

time is the sum of the periods spent waiting to get into memory, waiting in the ready

queue, executing on the CPU, and doing I/O.

• Waiting time. The CPU-scheduling algorithm does not affect the amount of time

during which a process executes or does I/O. It affects only the amount of time that a

process spends waiting in the ready queue. Waiting time is the sum of the periods

spent waiting in the ready queue.

• Response time. In an interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output fairly early and can continue

computing new results while previous results are being output to the user. Thus,

another measure is the time from the submission of a request until the first response is

produced. This measure, called response time, is the time it takes to start responding,

not the time it takes to output the response. The turnaround time is generally limited

by the speed of the output device.

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

35

It is desirable to maximize CPU utilization and throughput and to minimize

turnaround time, waiting time, and response time. In most cases, we optimize the

average measure. However, under some circumstances, we prefer to optimize the

minimum or maximum values rather than the average. For example, to guarantee that

all users get good service, we may want to minimize the maximum response time.

4.7. Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated the CPU. There are many different CPU-scheduling

algorithms. In this section, we describe several of them.

4.7.1. First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served (FCFS)

scheduling algorithm. With this scheme, the process that requests the CPU first is

allocated the CPU first. The implementation of the FCFS policy is easily managed

with a FIFO queue. When a process enters the ready queue, its PCB is linked onto the

tail of the queue. When the CPU is free, it is allocated to the process at the head of the

queue. The running process is then removed from the queue. The code for FCFS

scheduling is simple to write and understand. On the negative side, the average

waiting time under the FCFS policy is often quite long. Consider the following set of

processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,

we get the result shown in the following Gantt chart, which is a bar chart that

illustrates a particular schedule, including the start and finish times of each of the

participating processes:

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

36

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and

27 milliseconds for process P3. Thus, the average waiting time is (0+ 24 + 27)/3 = 17

milliseconds. If the processes arrive in the order P2, P3, P1, however, the results will

be as shown in the following Gantt chart:

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction

is substantial. Thus, the average waiting time under an FCFS policy is generally not

minimal and may vary substantially if the processes’ CPU burst times vary greatly.

In addition, consider the performance of FCFS scheduling in a dynamic

situation. Assume we have one CPU-bound process and many I/O-bound processes.

As the processes flow around the system, the following scenario may result. The

CPU-bound process will get and hold the CPU. During this time, all the other

processes will finish their I/O and will move into the ready queue, waiting for the

CPU. While the processes wait in the ready queue, the I/O devices are idle.

Eventually, the CPU-bound process finishes its CPU burst and moves to an I/O

device. All the I/O-bound processes, which have short CPU bursts, execute quickly

and move back to the I/O queues. At this point, the CPU sits idle. The CPU-bound

process will then move back to the ready queue and be allocated the CPU. Again, all

the I/O processes end up waiting in the ready queue until the CPU-bound process is

done. There is a convoy effect as all the other processes wait for the one big process

to get off the CPU. This effect results in lower CPU and device utilization than might

be possible if the shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the

CPU has been allocated to a process, that process keeps the CPU until it releases the

CPU, either by terminating or by requesting I/O. The FCFS algorithm is thus

particularly troublesome for time-sharing systems, where it is important that each user

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

37

get a share of the CPU at regular intervals. It would be disastrous to allow one process

to keep the CPU for an extended period.

4.7.2. Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF)

scheduling algorithm. This algorithm associates with each process the length of the

process’s next CPU burst. When the CPU is available, it is assigned to the process

that has the smallest next CPU burst. If the next CPU bursts of two processes are the

same, FCFS scheduling is used to break the tie. Note that a more appropriate term for

this scheduling method would be the shortest-next-CPU-burst algorithm, because

scheduling depends on the length of the next CPU burst of a process, rather than its

total length. We use the term SJF because most people and textbooks use this term to

refer to this type of scheduling. As an example of SJF scheduling, consider the

following set of processes, with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Using SJF scheduling, we would schedule these processes according to the

following Gantt chart:

The waiting time is 3 milliseconds for process P1, 16milliseconds for process

P2, 9milliseconds for process P3, and 0milliseconds for process P4. Thus, the average

waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if we were using

the FCFS scheduling scheme, the average waiting time would be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the

minimum average waiting time for a given set of processes. Moving a short process

before a long one decreases the waiting time of the short process more than it

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

38

increases the waiting time of the long process. Consequently, the average waiting time

decreases. The real difficulty with the SJF algorithm is knowing the length of the next

CPU request. For long-term (job) scheduling in a batch system, we can use the

process time limit that a user specifies when he submits the job. In this situation, users

are motivated to estimate the process time limit accurately, since a lower value may

mean faster response but too low a value will cause a time-limit-exceeded error and

require resubmission. SJF scheduling is used frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level

of short-term CPU scheduling. With short-term scheduling, there is no way to know

the length of the next CPU burst. One approach to this problem is to try to

approximate SJF scheduling. We may not know the length of the next CPU burst, but

we may be able to predict its value. We expect that the next CPU burst will be similar

in length to the previous ones. By computing an approximation of the length of the

next CPU burst, we can pick the process with the shortest predicted CPU burst.

The SJF algorithm can be either preemptive or nonpreemptive. The choice

arises when a new process arrives at the ready queue while a previous process is still

executing. The next CPU burst of the newly arrived process may be shorter than what

is left of the currently executing process. A preemptive SJF algorithm will preempt

the currently executing process, whereas a nonpreemptive SJF algorithm will allow

the currently running process to finish its CPU burst. Preemptive SJF scheduling is

sometimes called shortest-remaining-time-first scheduling.

As an example, consider the following four processes, with the length of the CPU

burst given in milliseconds:

If the processes arrive at the ready queue at the times shown and need the

indicated burst times, then the resulting preemptive SJF schedule is as depicted in the

following Gantt chart:

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

39

Process P1 is started at time 0, since it is the only process in the queue.

Process P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is

larger than the time required by process P2 (4 milliseconds), so process P1 is

preempted, and process P2 is scheduled. The average waiting time for this example is

[(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds. Nonpreemptive

SJF scheduling would result in an average waiting time of 7.75 milliseconds.

4.7.3. Priority Scheduling

The SJF algorithm is a special case of the general priority-scheduling

algorithm. Apriority is associated with each process, and the CPU is allocated to the

process with the highest priority. Equal-priority processes are scheduled in FCFS

order. An SJF algorithm is simply a priority algorithm where the priority (p) is the

inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the

priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.

Priorities are generally indicated by some fixed range of numbers, such as 0 to 7 or 0

to 4,095. However, there is no general agreement on whether 0 is the highest or

lowest priority. Some systems use low numbers to represent low priority; others use

low numbers for high priority. This difference can lead to confusion. In this text, we

assume that low numbers represent high priority. As an example, consider the

following set of processes, assumed to have arrived at time 0 in the order P1, P2, · · ·,

P5, with the length of the CPU burst given in milliseconds:

Using priority scheduling, we would schedule these processes according to the

following Gantt chart:

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

40

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority of a

process. For example, time limits, memory requirements, the number of open files,

and the ratio of average I/O burst to average CPU burst have been used in computing

priorities. External priorities are set by criteria outside the operating system, such as

the importance of the process, the type and amount of funds being paid for computer

use, the department sponsoring the work, and other, often political, factors. Priority

scheduling can be either preemptive or nonpreemptive. When a process arrives at the

ready queue, its priority is compared with the priority of the currently running

process. A preemptive priority scheduling algorithm will preempt the CPU if the

priority of the newly arrived process is higher than the priority of the currently

running process. A nonpreemptive priority scheduling algorithm will simply put the

new process at the head of the ready queue.

A major problem with priority scheduling algorithms is indefinite blocking,

or starvation. A process that is ready to run but waiting for the CPU can be

considered blocked. A priority scheduling algorithm can leave some low priority

processes waiting indefinitely. In a heavily loaded computer system, a steady stream

of higher-priority processes can prevent a low-priority process from ever getting the

CPU. Generally, one of two things will happen. Either the process will eventually be

run (at 2 A.M. Sunday, when the system is finally lightly loaded), or the computer

system will eventually crash and lose all unfinished low-priority processes.

A solution to the problem of in definite blockage of low-priority processes is

aging. Aging involves gradually increasing the priority of processes that wait in the

system for a long time. For example, if priorities range from 127 (low) to 0 (high), we

could increase the priority of a waiting process by 1 every 15 minutes. Eventually,

even a process with an initial priority of 127 would have the highest priority in the

system and would be executed. In fact, it would take no more than 32 hours for a

priority-127 process to age to a priority-0 process.

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

41

4.7.4. Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for

timesharing systems. It is similar to FCFS scheduling, but preemption is added to

enable the system to switch between processes. A small unit of time, called a time

quantum or time slice, is defined. A time quantum is generally from10 to 100

milliseconds in length. The ready queue is treated as a circular queue.

The CPU scheduler goes around the ready queue, allocating the CPU to each

process for a time interval of up to 1 time quantum.

To implement RR scheduling, we again treat the ready queue as a FIFO queue

of processes. New processes are added to the tail of the ready queue. The CPU

scheduler picks the first process from the ready queue, sets a timer to interrupt after 1

time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less

than 1 time quantum. In this case, the process itself will release the CPU voluntarily.

The scheduler will then proceed to the next process in the ready queue. If the CPU

burst of the currently running process is longer than 1 time quantum, the timer will go

off and will cause an interrupt to the operating system. A context switch will be

executed, and the process will be put at the tail of the ready queue. The CPU

scheduler will then select the next process in the ready queue. The average waiting

time under the RR policy is often long. Consider the following set of processes that

arrive at time 0, with the length of the CPU burst given in milliseconds:

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4

milliseconds. Since it requires another 20 milliseconds, it is preempted after the first

time quantum, and the CPU is given to the next process in the queue, process P2.

Process P2 does not need 4 milliseconds, so it quits before its time quantum expires.

The CPU is then given to the next process, process P3. Once each process has

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

42

received 1 time quantum, the CPU is returned to process P1 for an additional time

quantum. The resulting RR schedule is as follows:

Let’s calculate the average waiting time for this schedule. P1 waits for 6

milliseconds (10 - 4), P2 waits for 4 milliseconds, and P3 waits for 7 milliseconds.

Thus, the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more than

1 time quantum in a row (unless it is the only runnable process). If a process’s CPU

burst exceeds 1 time quantum, that process is preempted and is put back in the ready

queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q, then

each process gets 1/n of the CPU time in chunks of at most q time units. Each process

must wait no longer than (n − 1) × q time units until its next time quantum. For

example, with five processes and a time quantum of 20 milliseconds, each process

will get up to 20 milliseconds every 100 milliseconds. The performance of the RR

algorithm depends heavily on the size of the time quantum. At one extreme, if the

time quantum is extremely large, the RR policy is the same as the FCFS policy. In

contrast, if the time quantum is extremely small (say, 1 millisecond), the RR approach

can result in a large number of context switches. Assume, for example, that we have

only one process of 10 time units. If the quantum is 12 time units, the process finishes

in less than 1 time quantum, with no overhead. If the quantum is 6 time units,

however, the process requires 2 quanta, resulting in a context switch. If the time

quantum is 1 time unit, then nine context switches will occur, slowing the execution

of the process accordingly (Figure 4.2).

Thus, we want the time quantum to be large with respect to the context switch

time. If the context-switch time is approximately 10 percent of the time quantum, then

about 10 percent of the CPU time will be spent in context switching. In practice, most

modern systems have time quanta ranging from 10 to 100 milliseconds. The time

required for a context switch is typically less than 10 microseconds; thus, the context-

switch time is a small fraction of the time quantum.

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

43

Figure 4-2 How a smaller time quantum increases context switches

Turnaround time also depends on the size of the time quantum. As we can see

from Figure 4.2, the average turnaround time of a set of processes does not

necessarily improve as the time-quantum size increases. In general, the average

turnaround time can be improved if most processes finish their next CPU burst in a

single time quantum. For example, given three processes of 10 time units each and a

quantum of 1 time unit, the average turnaround time is 29. If the time quantum is 10,

however, the average turnaround time drops to 20. If context-switch time is added in,

the average turnaround time increases even more for a smaller time quantum, since

more context switches are required.

Although the time quantum should be large compared with the context switch

time, it should not be too large. As we pointed out earlier, if the time quantum is too

large, RR scheduling degenerates to an FCFS policy. A rule of thumb is that 80

percent of the CPU bursts should be shorter than the time quantum.

4.7.5. Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in which

processes are easily classified into different groups. For example, a common division

is made between foreground (interactive) processes and background (batch)

processes. These two types of processes have different response-time requirements

and so may have different scheduling needs. In addition, foreground processes may

have priority (externally defined) over background processes. A multilevel queue

scheduling algorithm partitions the ready queue into several separate queues (Figure

6.6). The processes are permanently assigned to one queue, generally based on some

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

44

property of the process, such as memory size, process priority, or process type. Each

queue has its own scheduling algorithm. For example, separate queues might be used

for foreground and background processes. The foreground queue might be scheduled

by an RR algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is commonly

implemented as fixed-priority preemptive scheduling. For example, the foreground

queue may have absolute priority over the background queue. Let’s look at an

example of a multilevel queue scheduling algorithm with five queues, listed below in

order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

Figure 4-3 Multilevel queue scheduling

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

45

Each queue has absolute priority over lower-priority queues. No process in the batch

queue, for example, could run unless the queues for system processes, interactive

processes, and interactive editing processes were all empty. If an interactive editing

process entered the ready queue while a batch process was running, the batch process

would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets a

certain portion of the CPU time, which it can then schedule among its various

processes. For instance, in the foreground–background queue example, the foreground

queue can be given 80 percent of the CPU time for RR scheduling among its

processes, while the background queue receives 20 percent of the CPU to give to its

processes on an FCFS basis.

4.7.6. Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes

are permanently assigned to a queue when they enter the system. If there are separate

queues for foreground and background processes, for example, processes do not move

from one queue to the other, since processes do not change their foreground or

background nature. This setup has the advantage of low scheduling overhead, but it is

inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows a

process to move between queues. The idea is to separate processes according to the

characteristics of their CPU bursts. If a process uses too much CPU time, it will be

moved to a lower-priority queue. This scheme leaves I/O-bound and interactive

processes in the higher-priority queues. In addition, a process that waits too long in a

lower-priority queue may be moved to a higher-priority queue. This form of aging

prevents starvation.

For example, consider a multilevel feedback queue scheduler with three queues,

numbered from 0 to 2 (Figure 4.4). The scheduler first executes all processes in queue

0. Only when queue 0 is empty will it execute processes in queue 1. Similarly,

processes in queue 2 will be executed only if queues 0 and 1 are empty. A process that

arrives for queue 1 will preempt a process in queue 2. A process in queue 1 will in

turn be preempted by a process arriving for queue 0.

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

46

A process entering the ready queue is put in queue 0. A process in queue 0 is

given a time quantum of 8 milliseconds. If it does not finish within this time, it is

moved to the tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is

given a quantum of 16 milliseconds. If it does not complete, it is preempted and is put

into queue 2. Processes in queue 2 are run on an FCFS basis but are run only when

queues 0 and 1 are empty.

Figure 4-4 Multilevel feedback queues.

This scheduling algorithm gives highest priority to any process with a CPU

burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish its

CPU burst, and go off to its next I/O burst. Processes that need more than 8 but less

than 24 milliseconds are also served quickly, although with lower priority than shorter

processes. Long processes automatically sink to queue 2 and are served in FCFS order

with any CPU cycles left over from queues 0 and 1.

In general, a multilevel feedback queue scheduler is defined by the following

parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher priority

queue

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

47

• The method used to determine when to demote a process to a lower priority

queue

• The method used to determine which queue a process will enter when that

process needs service

The definition of a multilevel feedback queue scheduler makes it the

most general CPU-scheduling algorithm. It can be configured to match a

specific system under design. Unfortunately, it is also the most complex

algorithm, since defining the best scheduler requires some means by which to

select values for all the parameters.

4.8. Algorithm Evaluation

How do we select a CPU-scheduling algorithm for a particular system? there are

many scheduling algorithms, each with its own parameters. As a result, selecting an

algorithm can be difficult. The first problem is defining the criteria to be used in

selecting an algorithm. criteria are often defined in terms of CPU utilization, response

time, or throughput. To select an algorithm, we must first define the relative

importance of these elements. Our criteria may include several measures, such as

these:

• Maximizing CPU utilization under the constraint that the maximum

response time is 1 second

• Maximizing throughput such that turnaround time is (on average) linearly

proportional to total execution time

Chapter Four CPU Scheduling Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

