Chapter 2: Motion in one dimension

2-1- Position

A particle's position x is the location of the particle with respect to a chosen reference point that we can consider to be the origin of a coordinate system.

2-2- Displacement and Distance

The displacement $\Delta \mathrm{x}$ of a particle is defined as its change in position. As it moves from an initial position x_{i} to a final position x_{f}, we write the displacement of the particle as
$\Delta \mathrm{x}=\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}$
From this definition we see that Δx is positive if x_{f} is greater than x_{i} and negative if x_{f} is less than x_{i}.

Displacement is an example of a vector quantity. We use plus and minus signs to indicate vector direction. Any object always moving to the right undergoes a positive displacement $+\Delta x$, and any object moving to the left undergoes a negative displacement $-\Delta x$.

It is very important to recognize the difference between displacement and distance traveled.
Distance \mathbf{d} is the length of a path followed by a particle.

Ex: What is the difference between distance and displacement?

Displacement	Distance		
Vector quantity (has direction and magnitude)	Scalar quantity (has magnitude only)		
Positive or negative	Always positive		
It's magnitude is shortest length between two			
points			is the length between two points longer than
:---:			
straight line between them			

2-3- Average velocity and speed

The average velocity \bar{v}_{x} of a particle is defined as the particle's displacement Δx divided by the time interval Δt during which that displacement occurred:
$\overline{\mathrm{v}}_{\mathrm{x}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}$
where the subscript " x " indicates motion along the x-axis. The average velocity has dimensions of length divided by time (L/T), or meters per second in SI units.

There is a clear distinction between speed and velocity. The average speed \bar{v} of a particle, a scalar quantity, is defined as the total distance traveled d divided by the total time it takes to travel that distance:

$$
\overline{\mathrm{v}}=\frac{\mathrm{d}}{\Delta \mathrm{t}}
$$

The SI unit of average speed is the same as the unit of average velocity: meters per second. However, unlike average velocity, average speed has no direction and hence carries no algebraic sign.

Ex: Find the displacement, average velocity, and average speed of the car in the following figure between positions A and F. Note that $X_{A}=30 \mathrm{~m}$ at $\mathrm{t}=0 \mathrm{sec}$ and that $X_{F}=-53 \mathrm{~m}$ at $\mathrm{t}=50 \mathrm{sec}$

Position	$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
A	0	30
B	10	52
C	20	38
D	30	0
E	40	-37
F	50	-53

Soln:

$$
\begin{aligned}
& \Delta \mathrm{x}=\mathrm{x}_{\mathrm{F}}-\mathrm{x}_{\mathrm{A}}=-53 \mathrm{~m}-30 \mathrm{~m}=-83 \mathrm{~m} \\
& \overline{\mathrm{v}}_{\mathrm{x}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{-53-30}{50-0}=-1.7 \mathrm{~m} / \mathrm{s} \\
& \overline{\mathrm{v}}=\frac{\mathrm{d}}{\Delta \mathrm{t}}=\frac{127}{50}=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2-4- Instantaneous velocity and speed

Instantaneous velocity v_{x} equals the limiting value of the ratio $\Delta x / \Delta t$ as Δt approaches zero

$$
\mathrm{v}_{\mathrm{x}}=\lim _{\Delta \mathrm{t} \rightarrow 0} \frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{dx}}{\mathrm{dt}}
$$

The instantaneous velocity can be positive, negative, or zero. In the following figure, when the slope of the position-time graph is positive, such as at any time during the first $10 \mathrm{~s}, \mathrm{v}_{\mathrm{x}}$ is positive. After point B, v_{x} is negative because the slope is negative. At the peak, the slope and the instantaneous velocity are zero.

The instantaneous speed of a particle is defined as the magnitude of its velocity.

Ex: A particle moves along the x-axis. Its x coordinate varies with time according to the expression $x=-4 t+2 t^{2}$ where x is in meters and t is in seconds. The position-time graph for this motion is shown in following figure. Note that the particle moves in the negative x direction for the first second of motion, is at rest at the moment $t=1 \mathrm{~s}$, and moves in the positive x direction for $t>1 \mathrm{~s}$.
a) Determine the displacement of the particle in the time intervals $t=0$ to $t=1 \mathrm{sec}$ and $t=1 \mathrm{~s}$ to $t=3 \mathrm{~s}$.
b) Calculate the average velocity during these two time intervals.
c) Find the instantaneous velocity of the particle at $t=2.5 \mathrm{~s}$.

Soln:

a)

$$
\begin{aligned}
& \Delta x_{(A) \rightarrow(B)}=x_{f}-x_{i}=x_{(B)}-x_{(A)} \\
& =\left[-4(1)+2(1)^{2}\right]-\left[-4(0)+2(0)^{2}\right]=-2 \mathrm{~m} \\
& \Delta x_{(B) \rightarrow(®)}=x_{f}-x_{i}=x_{(®)}-x_{(B)} \\
& =\left[-4(3)+2(3)^{2}\right]-\left[-4(1)+2(1)^{2}\right]=+8 \mathrm{~m}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \overline{\mathrm{V}}_{\mathrm{x}_{(® \rightarrow(B)}}=\frac{\Delta x_{\circledR \rightarrow(®)}}{\Delta t}=\frac{-2 \mathrm{~m}}{1 \mathrm{~s}}=-2 \mathrm{~m} / \mathrm{s} \\
& \overline{\mathrm{~V}}_{\mathrm{x}(® \rightarrow(®))}=\frac{\Delta x_{(® \rightarrow(®)}}{\Delta t}=\frac{8 \mathrm{~m}}{2 \mathrm{~s}}=+4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c)
$\mathrm{v}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=-4+4 \mathrm{t}$
$\mathrm{v}_{\mathrm{x}}(\mathrm{t}=2.5)=6 \mathrm{~m} / \mathrm{s}$

2-5- Acceleration

The average acceleration \bar{a}_{x} of the particle is defined as the change in velocity Δv_{x} divided by the time interval Δt during which that change occurred:

$$
\bar{a}_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x_{f}}-v_{x_{i}}}{t_{f}-t_{i}}
$$

As with velocity, we can use positive and negative signs to indicate the direction of the acceleration. Acceleration has dimensions of length divided by time squared, or $\mathrm{L} / \mathrm{T}^{2}$. The SI unit of acceleration is meters per second squared $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$.

The instantaneous acceleration equals the derivative of the velocity with respect to time

$$
\mathrm{a}_{\mathrm{x}}=\lim _{\Delta \mathrm{t} \rightarrow 0} \frac{\Delta \mathrm{v}_{\mathrm{x}}}{\Delta \mathrm{t}}=\frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dt}}
$$

If a_{x} is positive, then the acceleration is in the positive x direction; if a_{x} is negative, then the acceleration is in the negative x direction. The acceleration can also be written

$$
\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}
$$

Ex: The velocity of a particle moving along the x-axis varies in time according to the expression $v_{x}=\left(40-5 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. (a) Find the average acceleration in the time interval $\mathrm{t}=0$ to $\mathrm{t}=2.0 \mathrm{~s}$. (b) Determine the acceleration at $\mathrm{t}=2.0 \mathrm{~s}$.

Soln:

a)
$\bar{a}_{x}=\frac{v_{x f}-v_{x i}}{t_{f}-t_{i}}$
$v_{x A}=40-5(0)^{2}=40 \mathrm{~m} / \mathrm{s}$
$v_{x B}=40-5(2)^{2}=20 \mathrm{~m} / \mathrm{s}$
$\bar{a}_{x}=\frac{\mathrm{v}_{\mathrm{xB}}-\mathrm{v}_{\mathrm{xA}}}{\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}}}=\frac{(20-40) \mathrm{m} / \mathrm{s}}{(2-0) \mathrm{s}}=-10 \mathrm{~m} / \mathrm{s}^{2}$
b)
$\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dt}}=-10 \mathrm{tm} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{x}}(\mathrm{t}=2 \mathrm{~s})=-20 \mathrm{~m} / \mathrm{s}^{2}$

