
 Assist.prof: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Lecture Seven
 Instruction Execution and Addressing

A binary code used for specifying micro-operations for the computer.

In computer science, an instruction set architecture (ISA) is an abstract

model of a computer. It is also referred to as architecture or computer

architecture. A realization of an ISA, such as a central processing

unit (CPU), is called an implementation.

In general, an ISA defines the supported data types, the registers, the

hardware support for managing main memory, fundamental features

(such as the memory consistency, addressing modes, virtual memory),

and the input/output model of a family of implementations of the ISA.

The number of operands of an operator is called its arity. Based on arity,

operators are classified as nullary (no operands), unary (1 operand),

binary (2 operands), ternary (3 operands), etc.

Operands specify the value an instruction is to operate on, and

where the result is to be stored. Instruction sets are classified by the

number of operands used. An instruction may have no, one, two, or three

operands.

In instruction that have three operands, one of the operand specifies the

destination as an address where the result is to be saved. The other two

operands specify the source either as addresses of memory location or

constants.

 ADD destination, source1, source2

EX: A=B+C

 ADD A,B,C

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Abstract_model
https://en.wikipedia.org/wiki/Abstract_model
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Register_(computer)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Memory_consistency
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Input/output

 Assist.prof: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

EX: Y=(X+D)* (N+1)

 ADD T1, X, D

 ADD T2, N, 1

 Mul Y, T1, T2

In this type both operands specify sources. The first operand also

specifies the destination address after the result is to be saved. The first

operand must be an address in memory, but the second may be an address

or a constant.

 ADD destination, source

EX: A=B+C EX: Y=(X+D)* (N+1)

MOV AX, BX MOV AX, X

ADD AX, CX ADD AX, D

 MOV BX, N

 ADD BX, 1

 MUL BX

 MOV Y,AX

Some computer have only one general purpose register, usually

called on Acc. It is implied as one of the source operands and the

destination operand in memory instruction the other source operand is

specified in the instruction as location in memory.

 ADD source

LDA source; copy value from memory to ACC.

STA destination; copy value from Acc into memory.

EX: A=B+C EX: Y=(X+D)* (N+1)

LDA B LDA X

ADD C ADD D

STA A STA T1

 LDA N

 ADD 1

 MUL T1

 STA Y

 Assist.prof: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

Some computers have arithmetic instruction in which all operands

are implied, these zero operand instruction use a stack, a stack is a list

structure in which all insertion and deletion occur at one end, the element

on a stack may be removed only in the reverse of the order in which they

were entered. The process of inserting an item is called Pushing,

removing an item is called Popping.

Computers that use Zero operand instruction for arithmetic

operations also use one operand PUSH and POP instruction to copy

value between memory and the stack.

PUSH source; Push the value of the memory operand onto the Top

 Of the stack.

POP destination; POP value from the Top of the stack and copy it into

 The memory operand.

EX: A=B+C EX: Y=(X+D)* (N+1)

PUSH B PUSH X

PUSH C PUSH D

ADD ADD

POP A PUSH N

 PUSH 1

 ADD

 MUL

 POP Y

NOTE IN ADD Pop the two value of the stack, add them, and then push

the sum back into the stack.

There are a lot of instructions in assembly but there are only about twenty

that you have to know and will use very often. Most instructions are made

up of three characters and have an operand then a comma then another

operand. For example to put a data into a register you use

the MOV instruction.

 Assist.prof: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

The microprocessor has a group of data transfer instructions that

are provided to move data either between its internal registers or between

an internal register and a storage location in memory. Some of these

instructions are:

MOV

MOV use to transfer a byte or a word of data from a source

operand to a destination operand. It’s more useful data transfer instruction

because it transfers the data from one memory location to another. These

operands can be internal registers and storage locations in memory.

Notice that the MOV instruction cannot transfer data directly between a

source and a destination that both reside in external memory. For

instance, flag bits within the microprocessors are not modified by

execution of a MOV instruction.

EXAMPLES:

1. MOV DX, CS Where CX=0100H DX=CS=0100H CS DX
2. MOV AX, 05H Transform the value 05 to AX
3. MOV BX, [0ABCD] Transform the value that saved in location 0ABCD to BX

XCHG

In MOV instruction the original contents of the source location are

preserved and the original contents of the destination are destroyed. But

XCHG (exchange) instruction can be used to swap data between two

general purpose register or between a general purpose register and storage

location in memory.

EXAMPLES:

XCHG AL, DL Exchanges the contents of AL with DL.

Load Effective Address LEA, LDS, LES, LFS, LGS, and LSS

There are several load-effective address instructions in the

microprocessor instruction set. The LES instruction loads any 16 bit

register with the offset address of the data specified by the operands, as

determined by the addressing mode selected for the instruction.

 Assist.prof: Ameen Abdulzahra
Architectural and Assembly Language Second Stage

EXAMPLES:

LED BX,[DI] MOV BX,[DI]

The LDS, LES, LCS and LSS instructions load any 16 bit or 32 bit

register with an offset address and the DS, ES, CS or SS segment register

with a segment address.

EXAMPLES:

LDS BX,[DI] ,This instruction transfers the 32bit number addressed by

DI in the data segment into BX and DS register.

Push and POP Instruction

It is necessary to save the contents of certain registers or some

other main program parameters. These values are saved by pushing them

onto the stack. Typically, these data correspond to registers and memory

locations that are used by the subroutine. The instruction that is used to

save parameters on the stack is the push (PUSH) instruction and that used

to retrieve them back is the pop (POP) instruction. Notice a general-

purpose register, a segment register (excluding CS), or a storage location

in memory as their operand.

Execution of a PUSH instruction causes the data corresponding to

the operand to be pushed onto the top of the stack. For instance, if the

instruction is PUSH AX the result is as follows:

((SP)-1) (AH)

((SP)-2) (AL)

This shows that the two bytes of the AX are saved in the stack part of

memory and the stack pointer is decrement by 2 such that it points to the

new top of the stack.

On the other hand, if the instruction is POP AX Its execution results in

(AL) ((SP))

(AH) ((SP) + 1)

The saved contents of AX are restored back into the register.

We also can save the contents of the flag register and if saved we will

later have to restore them. These operations can be accomplished with the

push flags (PUSHF) and pop flags (POPF) instructions, respectively.

Notice the PUSHF save the contents of the flag register on the top of the

stack. On the other hand, POPF returns the flags from the top of the stack

to the flag register.

