Lecture 5: Operators

5.1 C++ Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical calculations on operands(variables).

5.2 Types of operators available in C++

- Arithmetic / Mathematical operator
- Assignment operator
- Increment Decrement operator
- Relational operator
- Logical operator
- Unary operator

Arithmetic Operator:

There are following arithmetic operators supported by C++ language: Assume variable A holds 10 and variable B holds 20, then:

Operator	Description	Example
+	Adds two operands	A + B will give 30
-	Subtracts second operand from the first	A - B will give -10
*	Multiplies both operands	A * B will give 200
/	Divides numerator by de- numerator	B / A will give 2
%	Modulus Operator and remainder of after an integer division	B % A will give 0

Increment Decrement operator

Increment Decrement operators increase or decrease the operand by one value .

Example: Assume A=10, find the output result for the following expressiones:

++	Increment operator, increases integer value by one	A++ will give 11
	Decrement operator, decreases integer value by one	A will give 9

Assignment operator

Assignment operator is used to copy value from right to left variable.

Suppose we have: float X = 5, Y = 2;

=	Equal sign Copy value from right to left.	X = Y, Now both X and Y have 2
+=	Plus Equal operator to increase the left operand by right operand.	$X+=5 \rightarrow X=X+5$ will give $X=10$
-=	Minus Equal operator will return the subtraction of right operand from left operand.	$\begin{array}{c} Y = 1 \rightarrow Y = Y - 1 \text{ will} \\ \text{give } Y = 1 \end{array}$
=	Multiply Equal operator will return the product of right operand and left operand.	$X^ = Y \rightarrow X = X^* Y,$ X = 10
/=	Division Equal operator will divide right operand by left operand and return the quotient.	$\begin{array}{l} X \neq Y \rightarrow X = X \neq Y, \\ X = 2.5 \end{array}$
%=	Modulus Equal to operator will divide right operand by left operand and return the mod (Remainder).	X %= Y is similar to X = X % Y, now X is 1

Examples:

Rewrite the equevelment statmentes for the following expressions and find the results, assume X=2, Y=3, Z=4, V= 12, C=8.

Example	Equivalent Statement	Result
X += 5	X = X + 5	X ← 7
Y -= 8	Y = Y - 8	Y ← -5
Z *= 5	Z = Z * 5	z ←
V /= 4		$\vee \leftarrow$
C %= 3		C←

Relational Operator:

Relational operators are used for checking conditions whether the given condition is true or false. If the condition is true, it will return non-zero value, if the condition is false, it will return 0.

Suppose we have,

int X = 5, Y = 2;

Operator	Name	Description	Example
>	Greater than	Check whether the left operand is greater than right operand or not.	(X > Y) will return true
<	Smaller than	Check whether the left operand is smaller than right operand or not.	(X < Y) will return false
>=	Greater than or Equal to	Check whether the left operand is greater or equal to right operand or not.	(X >= Y) will return true
<=	Smaller than or Equal to	Check whether the left operand is smaller or equal to right operand or not.	(X <= Y) will return false
==	Equal to	Check whether the both operands are equal or not.	(X == Y) will return false
!=	Not Equal to	Check whether the both operands are equal or not.	(X != Y) will return true

Operator	Name	Example
==	Equality	5 == 5 // gives 1
!=	Inequality	5 != 5 // gives 0
<	Less Than	5 < 5.5 // gives 1
<=	Less Than or Equal	5 <= 5 // gives 1
>	Greater Than	5 > 5.5 // gives 0
>=	Greater Than or Equal	6.3 >= 5 // gives 1

Logical Operators

Logical operators are used in situation when we have more then one condition in a single if statement.

Suppose we have,

int X = 5, Y = 2;

Operator	Name	Description	Example
&&	AND	Return true if all conditions are true, return false if any of the condition is false.	if(X > Y && Y < X) will return true
	OR	Return false if all conditions are false, return true if any of the condition is true.	if(X > Y X < Y) will return true
!	NOT	Return true if condition if false, return false if condition is true.	if(!(X>y)) will return false

Operator	Name	Example
&&	Logical And	5 < 6 && 6 < 6 // gives 0
	Logical Or	5 < 6 6 < 5 // gives 1
!	Logical Negation (Not)	!(5 == 5) // gives 0

AND (&&) Table:		
Α	В	A & & B
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

OR() Table:			
A	В	A B	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
F	F	F	

NOT (!) Table:		
А	!A	
Т	F	
F	Т	

AND (&&) Table:		
Α	В	A & & B
1	1	1
1	0	0
0	1	0
0	0	0

OR()Table:				
Α	В	A B		
1	1	1		
1	0	1		
0	1	1		
0	0	0		

NOT (!) Table:			
A	!A		
1	0		
0	1		

Examples: The following example to understand all the arithmetic operators available in C++.

```
#include <iostream>
 using namespace std;
main()
{
int a = 21;
int b = 10;
int c ;
c = a + b;
cout << "Line 1 - Value of c is :" << c << endl ;</pre>
c = a - b;
cout << "Line 2 - Value of c is :" << c << endl ;</pre>
c = a * b;
cout << "Line 3 - Value of c is :" << c << endl ;</pre>
c = a / b;
cout << "Line 4 - Value of c is :" << c << endl ;</pre>
c = a \% b;
cout << "Line 5 - Value of c is :" << c << endl ;</pre>
c = a + +;
cout << "Line 6 - Value of c is :" << c << endl ;</pre>
c = a--;
cout << "Line 7 - Value of c is :" << c << endl ;</pre>
return 0;
```

The output for the above program is:

Line 1 - Value of c is :31 Line 2 - Value of c is :11 Line 3 - Value of c is :210 Line 4 - Value of c is :2 Line 5 - Value of c is :1 Line 6 - Value of c is :21 Line 7 - Value of c is :22

Q/ What's Output:

```
#include<iostream>
using namespace std;
int main()
{ int x,y,z;
x=y=z=0;
x=++y + ++z;
cout<<x<<y<<z<endl;
x=++y - --z;
cout<<x<<y<z<endl;
return 0;
}</pre>
```

Example: find the output result for the following logical operationes: Assume a=4, b=5, c=6

a=4, b=5, c=6

(a <b)&&(b<c)< th=""><th>(a<b) (b="" ="">c)</b)></th><th>!(a<b) (c>b)</b) (c></th><th>(a<b) (b>c)&&(a>b) (a>c)</b) (b></th></b)&&(b<c)<>	(a <b) (b="" ="">c)</b)>	!(a <b) (c>b)</b) (c>	(a <b) (b>c)&&(a>b) (a>c)</b) (b>
T && T	т т	!(T) T	T F && F F
T	Т	F T	T F F
		Т	T F
			Т

Example: find the output result for the following logical operationes:

Assume: X=0, Y=1, Z=1. Find the following expression: M = ++X || ++Y & ++Z M = ++X || ++Y & ++Z = 1 || (2 & 2) = T || (T & T) = T || T = T= 1