Lecture 5: Operators

5.1 C++ Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical calculations on operands(variables).

5.2 Types of operators available in C_{++}

- Arithmetic / Mathematical operator
- Assignment operator
- Increment Decrement operator
- Relational operator
- Logical operator
- Unary operator

Arithmetic Operator:

There are following arithmetic operators supported by C++ language:
Assume variable A holds 10 and variable B holds 20, then:

Operator	Description	Example
+	Adds two operands	A + B will give 30
-	Subtracts second operand from the first	A - B will give -10
Multiplies both operands	A * B will give 200	
/ Divides numerator by de-	B / A will give 2	
	numerator Modulus remainder of apter an integer division	B \% A will give 0
	Operator	

Increment Decrement operator

Increment Decrement operators increase or decrease the operand by one value.

Example: Assume $\mathbf{A}=\mathbf{1 0}$, find the output result for the following expressiones:

++	Increment operator, increases integer value by one	A++ will give 11
--	Decrement operator, decreases integer value by one	A-- will give 9

Assignment operator

Assignment operator is used to copy value from right to left variable.

Suppose we have:
float $X=5, Y=2$;

$=$	Equal sign Copy value from right to left.	$\mathrm{X}=\mathrm{Y}$, Now both X and Y have 2
$+=$	Plus Equal operator to increase the left operand by right operand.	$\mathrm{X}+=5 \rightarrow \mathrm{X}=\mathrm{X}+5$ will give X=10
$\boldsymbol{= =}$	Minus Equal operator will return the subtraction of right operand from left operand.	$\mathrm{Y}-=1 \rightarrow \mathrm{Y}=\mathrm{Y}-1$ will give Y=1
		Multiply Equal operator will return the product of right operand and left operand.
/=	Division Equal operator will divide right operand by left operand and return the quotient.	$\mathrm{X} /=\mathrm{Y} \rightarrow \mathrm{X}=\mathrm{X}=\mathrm{X} / \mathrm{Y}$, $\mathrm{X}=2.5$
\%= $=$	Modulus Equal to operator will divide right operand by left operand and return the mod (Remainder).	$\mathrm{X} \%=\mathrm{Y}$ is similar to $\mathrm{X}=$ $\mathrm{X} \% \mathrm{Y}, \mathrm{now} \mathrm{X}$ is 1

Examples:

Rewrite the equevelment statmentes for the following expressions anf find the results, assume $X=2, Y=3, Z=4, V=12, C=8$.

Example		Equivalent Statement
$X+=5$	$X=X+5$	R Result
$Y-=8$	$Y=Y-8$	$Y \leftarrow-5$
$Z^{*}=5$	$Z=Z^{*} 5$	$Z \leftarrow$
$V /=4$		$V \leftarrow$
$C \%=3$		$C \leftarrow$

Relational Operator:

Relational operators are used for checking conditions whether the given condition is true or false. If the condition is true, it will return non-zero value, if the condition is false, it will return 0 .

Suppose we have,

$$
\operatorname{int} X=5, Y=2 ;
$$

Operator	Name	Description	Example
$>$	Greater than	Check whether the left operand is greater than right operand or not.	$(\mathrm{X}>\mathrm{Y})$ will return true
$<$	Smaller than	Check whether the left operand is smaller than right operand or not.	$(\mathrm{X}<\mathrm{Y})$ will return false
$>=$	Greater than or Equal to	Check whether the left operand is greater or equal to right operand or not.	$(\mathrm{X}>=\mathrm{Y})$ will return true
$<=$	Smaller than or Equal to	Check whether the left operand is smaller or equal to right operand or not.	$(\mathrm{X}<=\mathrm{Y})$ will return false
$==$	Equal to	Check whether the both operands are equal or not.	$(\mathrm{X}==\mathrm{Y})$ will return false
$!=$	Not Equal to	Check whether the both operands are equal or not.	$(\mathrm{X}!=\mathrm{Y})$ will return true
le			

Operator	Name	Example
$==$	Equality	$5==5 / /$ gives 1
$!=$	Inequality	$5!=5 / /$ gives 0
$<$	Less Than	$5<5.5 / /$ gives 1
$<=$	Less Than or Equal	$5<=5 / /$ gives 1
$>$	Greater Than	$5>5.5 / /$ gives 0
$>=$	Greater Than or Equal	$6.3>=5 / /$ gives 1

Logical Operators

Logical operators are used in situation when we have more then one condition in a single if statement.

Suppose we have,
int $X=5, Y=2$;

Operator	Name	Description	Example	
\&\&	AND	Return true if all conditions are true, return false if any of the condition is false.	if $(X>Y \& \& Y<X)$ will return true	
II	OR	Return false if all conditions are false, return true if any of the condition is true.	if $(X>Y \\| X<Y)$ will return true	
!	NOT	Return true if condition if false, return false if condition is true.	if $(!(X>y))$ will return false	

Operator	Name	Example		
$\boldsymbol{\& \&}$	Logical And	$5<\mathbf{6} \& \& 6<6 / /$ gives 0		
$\\|$	Logical Or	$5<6 \\| 6<5 / /$ gives 1		
$!$	Logical Negation (Not)	$!(5==5) / /$ gives 0		

AND (\& \&) Table:		
A	B	A \& \& B
T	T	T
T	F	F
F	T	F
F	F	F

AND (\&\&) Table:

A	\mathbf{B}	A \&\& \mathbf{B}
1	1	1
1	0	0
0	1	0
0	0	0

| OR (\| |) Table: | | |
| :---: | :---: | :---: |
| A | B | A \|| B |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |

NOT (!) Table:

A	I A
T	F
F	T

| OR (\| |) Table: | | |
| :---: | :---: | :---: |
| A | B | A \| B |
| 1 | 1 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |

NOT (!) Table:

\mathbf{A}	$!\mathbf{A}$
1	0
0	1

Examples: The following example to understand all the arithmetic operators available in $\mathrm{C}++$.

```
#include <iostream>
using namespace std;
main()
{
int a = 21;
int b = 10;
int c ;
c = a + b;
cout << "Line 1 - Value of c is :" << c << endl ;
c = a - b;
cout << "Line 2 - Value of c is :" << c << endl ;
c = a * b;
cout << "Line 3 - Value of c is :" << c << endl ;
c = a / b;
cout << "Line 4 - Value of c is :" << c << endl ;
c = a % b;
cout << "Line 5 - Value of c is :" << c << endl ;
c = a++;
cout << "Line 6 - Value of c is :" << c << endl ;
c = a--;
cout << "Line 7 - Value of c is :" << c << endl ;
return 0;
```

The output for the above program is:

```
Line 1 - Value of c is :31
Line 2 - Value of c is :11
Line 3 - Value of c is :210
Line 4 - Value of c is :2
Line 5 - Value of c is :1
Line 6 - Value of c is :21
Line 7 - Value of c is :22
```


Q/ What's Output:

\#include<iostream>
using namespace std;
int main()
\{ int $\mathbf{x , y}, \mathbf{z}$;
$x=y=z=0$;
x=++y + ++z;
cout<<x<<<y<<z<<endl;
x=++y ---z;
cout<<x<<<y<<z<<endl;
return 0;
\}

Example: find the output result for the following logical operationes:
 Assume $a=4, b=5, c=6$

| $(\mathrm{a}<\mathrm{b}) \& \&(\mathrm{~b}<\mathrm{c})$ | $(\mathrm{a}<\mathrm{b}) \\|(\mathrm{b}>\mathrm{c})$ | ! (a<b) \| | $(\mathrm{c}>\mathrm{b})$ | ($\mathrm{a}<\mathrm{b}$) \| | ($\mathrm{b}>\mathrm{c}$) \& \& $(\mathrm{a}>\mathrm{b})\\|\\|(\mathrm{c}>\mathrm{c})$ |
| :---: | :---: | :---: | :---: |
| T \& T | T \\| T | !(7) \\| T | T \\| F F \& F \| \| F |
| T | T | F \\| 11 | T \\|| F \|| F |
| | | T | T \\| F |
| | | | T |

Example: find the output result for the following logical operationes:

Assume: $X=0, Y=1, Z=1$. Find the following expression:
$M=++X| |++Y \& \&++Z$

$$
\begin{aligned}
M & =++X \|++Y \& \&++Z \\
& =1 \mid \|(2 \& \& 2) \\
& =T \|(T \& \& T) \\
& =T \| T \\
& =T \\
& =1
\end{aligned}
$$

