
105

Rarely does a process use all its address range. In fact, many processes use only

a small fraction of the address space available to them. It would be wasteful in these

cases to create a page table with entries for every page in the address range. Most of

this table would be unused but would take up valuable memory space. Some systems

provide hardware, in the form of a page-table length register (PTLR), to indicate

the size of the page table. This value is checked against every logical address to verify

that the address is in the valid range for the process. Failure of this test causes an error

trap to the operating system.

Figure 7-15 Valid (v) or invalid (i) bit in a page table

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

106

8. Chapter Eight

In the previous chapter we discussed various memory-management strategies used

in computer systems. All these strategies have the same goal: to keep many processes

in memory simultaneously to allow multiprogramming. However, they tend to require

that an entire process be in memory before it can execute.

Virtual memory is a technique that allows the execution of processes that are not

completely in memory. One major advantage of this scheme is that programs can be

larger than physical memory. Further, virtual memory abstracts main memory into an

extremely large, uniform array of storage, separating logical memory as viewed by the

user from physical memory. This technique frees programmers from the concerns of

memory-storage limitations. Virtual memory also allows processes to share files

easily and to implement shared memory. In addition, it provides an efficient

mechanism for process creation. Virtual memory is not easy to implement, however,

and may substantially decrease performance if it is used carelessly. In this chapter, we

discuss virtual memory in the form of demand paging and examine its complexity and

cost.

8.1. Background

The memory-management algorithms outlined in Chapter 7 are necessary because

of one basic requirement: The instructions being executed must be in physical

memory. The first approach to meeting this requirement is to place the entire logical

address space in physical memory. Dynamic loading can help to ease this restriction,

but it generally requires special precautions and extra work by the programmer. The

requirement that instructions must be in physical memory to be executed seems both

necessary and reasonable; but it is also unfortunate, since it limits the size of a

program to the size of physical memory. In fact, an examination of real programs

shows us that, in many cases, the entire program is not needed. For instance, consider

the following:

• Programs often have code to handle unusual error conditions. Since these errors

seldom, if ever, occur in practice, this code is almost never executed.

• Arrays, lists, and tables are often allocated more memory than they actually need.

An array may be declared 100 by 100 elements, even though it is seldom larger than

Chapter Eight Virtual memory Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

107

10 by 10 elements. An assembler symbol table may have room for 3,000 symbols,

although the average program has less than 200 symbols.

• Certain options and features of a program may be used rarely. For instance, the

routines on U.S. government computers that balance the budget have not been used in

many years.

Even in those cases where the entire program is needed, it may not all be

needed at the same time. The ability to execute a program that is only partially in

memory would confer many benefits:

• A program would no longer be constrained by the amount of physical memory that

is available. Users would be able to write programs for an extremely large virtual

address space, simplifying the programming task.

• Because each user program could take less physical memory, more programs could

be run at the same time, with a corresponding increase in CPU utilization and

throughput but with no increase in response time or turnaround time.

• Less I/O would be needed to load or swap user programs into memory, so each user

program would run faster.

Thus, running a program that is not entirely in memory would benefit both the

system and the user. Virtual memory involves the separation of logical memory as

perceived by users from physical memory. This separation allows an extremely large

virtual memory to be provided for programmers when only a smaller physical

memory is available (Figure 8.1). Virtual memory makes the task of programming

much easier, because the programmer no longer needs to worry about the amount of

physical memory available; she can concentrate instead on the problem to be

programmed. The virtual address space of a process refers to the logical (or virtual)

view of how a process is stored in memory. Typically, this view is that a process

begins at a certain logical address say, address 0 and exists in contiguous memory, as

shown in Figure 8.2. Recall from Chapter 7, though, that in fact physical memory may

be organized in page frames and that the physical page frames assigned to a process

may not be contiguous. It is up to the memory management unit (MMU) to map

logical pages to physical page frames in memory.

Chapter Eight Virtual memory Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

108

Figure 8-1 Diagram showing virtual memory that is larger than physical

memory

8.2. Demand Paging

Consider how an executable program might be loaded from disk into memory. One

option is to load the entire program in physical memory at program execution time.

However, a problem with this approach is that we may not initially need the entire

program in memory. Suppose a program starts with a list of available options from

which the user is to select. Loading the entire program into memory results in loading

the executable code for all options, regardless of whether or not an option is

ultimately selected by the user. An alternative strategy is to load pages only as they

are needed. This technique is known as demand paging and is commonly used in

virtual memory systems.

With demand-paged virtual memory, pages are loaded only when they are

demanded during program execution. Pages that are never accessed are thus never

loaded into physical memory. A demand-paging system is similar to a paging system

Chapter Eight Virtual memory Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

