
81

In most cases, a user program goes through several steps some of which may be

optional before being executed (Figure 7.3). Addresses may be represented in

different ways during these steps. Addresses in the source program are generally

symbolic (such as the variable count). A compiler typically binds these symbolic

addresses to relocatable addresses (such as ―14 bytes from the beginning of this

module‖). The linkage editor or loader in turn binds the relocatable addresses to

absolute addresses (such as 74014). Each binding is a mapping from one address

space to another. Classically, the binding of instructions and data to memory

addresses can be done at any step along the way:

• Compile time. If you know at compile time where the process will reside in

memory, then absolute code can be generated. For example, if you know that a user

process will reside starting at location R, then the generated compiler code will start at

that location and extend up from there. If, at some later time, the starting location

changes, then it will be necessary to recompile this code. The MS-DOS .COM-format

programs are bound at compile time.

• Load time. If it is not known at compile time where the process will reside in

memory, then the compiler must generate relocatable code. In this case, final binding

is delayed until load time. If the starting address changes, we need only reload the

user code to incorporate this changed value.

• Execution time. If the process can be moved during its execution from one memory

segment to another, then binding must be delayed until run time. Special hardware

must be available for this scheme to work. Most general-purpose operating systems

use this method.

A major portion of this chapter is devoted to showing how these various

bindings can be implemented effectively in a computer system and to discussing

appropriate hardware support.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

82

Figure ‎7-3 Multistep processing of a user program

7.1.3. Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address,

whereas an address seen by the memory unit that is, the one loaded into the memory

address register of the memory is commonly referred to as a physical address. The

compile-time and load-time address-binding methods generate identical logical and

physical addresses. However, the execution-time address binding scheme results in

differing logical and physical addresses. In this case, we usually refer to the logical

address as a virtual address. We use logical address and virtual address

interchangeably in this text. The set of all logical addresses generated by a program is

a logical address space. The set of all physical addresses corresponding to these

logical addresses is a physical address space. Thus, in the execution-time address-

binding scheme, the logical and physical address spaces differ.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

83

The run-time mapping from virtual to physical addresses is done by a hardware

device called the memory-management unit (MMU). The base register is now

called a relocation register. The value in the relocation register is added to every

address generated by a user process at the time the address is sent to memory (see

Figure 7.4). For example, if the base is at 14000, then an attempt by the user to

address location 0 is dynamically relocated to location14000; an access to location346

is mapped to location 14346.

Figure ‎7-4 Dynamic relocation using a relocation register

The user program never sees the real physical addresses. The program can

create a pointer to location 346, store it in memory, manipulate it, and compare it with

other addresses all as the number 346. Only when it is used as a memory address (in

an indirect load or store, perhaps) is it relocated relative to the base register. The user

program deals with logical addresses. The memory-mapping hardware converts

logical addresses into physical addresses. This form of execution-time binding was

discussed in Section 8.1.2. The final location of a referenced memory address is not

determined until the reference is made.

We now have two different types of addresses: logical addresses (in the range 0

to max) and physical addresses (in the range R + 0 to R + max for a base value R). The

user program generates only logical addresses and thinks that the process runs in

locations 0 to max. However, these logical addresses must be mapped to physical

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

84

addresses before they are used. The concept of a logical address space that is bound to

a separate physical address space is central to proper memory management.

7.2. Swapping

A process must be in memory to be executed. A process, however, can be

swapped temporarily out of memory to a backing store and then brought back into

memory for continued execution (Figure 8.5). Swapping makes it possible for the

total physical address space of all processes to exceed the real physical memory of the

system, thus increasing the degree of multiprogramming in a system.

7.2.1. Standard Swapping

Standard swapping involves moving processes between main memory and a

backing store. The backing store is commonly a fast disk. It must be large enough to

accommodate copies of all memory images for all users, and it must provide direct

access to these memory images. The system maintains a ready queue consisting of all

processes whose memory images are on the backing store or in memory and are ready

to run. Whenever the CPU scheduler decides to execute a process, it calls the

dispatcher. The dispatcher checks to see whether the next process in the queue is in

memory. If it is not, and if there is no free memory region, the dispatcher swaps out a

process currently in memory and swaps in the desired process. It then reloads registers

and transfers control to the selected process.

Chapter Seven Memory Management Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

