For example, if X = (1,7,3,2) and Y = (0,3,2,1), then $Y \le X$. In addition, Y < X if $Y \le X$ and $Y \models X$.

We can treat each row in the matrices *Allocation* and *Need* as vectors and refer to them as *Allocationi* and *Needi*. The vector *Allocationi* specifies the resources currently allocated to process *Pi*; the vector *Needi* specifies the additional resources that process *Pi* may still request to complete its task.

6.5.3.1. Safety Algorithm

We can now present the algorithm for finding out whether or not a system is in a safe state. This algorithm can be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = *Available* and *Finish*[i] = *false* for i = 0, 1, ..., n - 1.

2. Find an index *i* such that both

a. *Finish*[*i*] == *false*

b. *Needi* ≤ *Work*

If no such *i* exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = **true**

Go to step 2.

4. If *Finish*[*i*] == *true* for all *i*, then the system is in a safe state.

This algorithm may require an order of $m \times n^2$ operations to determine whether a state is safe.

6.5.3.2. Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be safely granted. Let *Requesti* be the request vector for process *Pi*.

If *Requesti* [j] == k, then

process Pi wants k instances of resource type Rj. When a request for resources is made by process Pi, the following actions are taken:

1. If *Requesti* \leq *Needi*, go to step 2. Otherwise, raise an error condition, since the process has exceeded its maximum claim.

2. If *Requesti* \leq *Available*, go to step 3. Otherwise, *Pi* must wait, since the resources are not available.

3. Have the system pretend to have allocated the requested resources to process Pi by modifying the state as follows:

```
Available = Available-Requesti;
```

Allocationi = Allocationi + Requesti;

Needi = Needi - Requesti;

If the resulting resource-allocation state is safe, the transaction is completed, and process Pi is allocated its resources. However, if the new state is unsafe, then Pi must wait for **Request***i*, and the old resource-allocation state is restored.

6.5.3.3. An Illustrative Example

To illustrate the use of the banker's algorithm, consider a system with five processes P0 through P4 and three resource types A, B, and C. Resource type A has ten instances, resource type B has five instances, and resource type C has seven instances. Suppose that, at time T0, the following snapshot of the system has been taken:

	Allocation	Max	Available
	A B C	A B C	A B C
P0	010	753	332
P1	200	322	
P2	302	902	
P3	211	222	
P4	002	433	

The content of the matrix *Need* is defined to be Max - Allocation and is as follows:

We claim that the system is currently in a safe state. Indeed, the sequence $\langle P1,P3, P4, P2, P0 \rangle$ satisfies the safety criteria. Suppose now that process *P*1 requests one additional instance of resource type *A* and two instances of resource type *C*, so *Request*1 = (1,0,2). To decide whether this request can be immediately granted, we first check that *Request*1 \leq *Available*—that is, that (1,0,2) \leq (3,3,2), which is true. We then pretend that this request has been fulfilled, and we arrive at the following new state:

	Allocation	Need	Available
	ABC	ABC	ABC
<i>P</i> 0	010	743	230
<i>P</i> 1	302	020	
P2	302	600	
Р3	211	011	
<i>P</i> 4	002	431	

We must determine whether this new system state is safe. To do so, we execute our safety algorithm and find that the sequence $\langle P1, P3, P4, P0, P2 \rangle$ satisfies the safety requirement. Hence, we can immediately grant the request of process *P*1.

You should be able to see, however, that when the system is in this state, a request for (3,3,0) by P4 cannot be granted, since the resources are not available.

Furthermore, a request for (0,2,0) by *P*0 cannot be granted, even though the resources are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the banker's algorithm.

6.6. Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock situation may occur. In this environment, the system may provide:

• An algorithm that examines the state of the system to determine whether

a deadlock has occurred

• An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they pertain to systems with only a single instance of each resource type, as well as to systems with several instances of each resource type. At this point, however, we note that a detection-and-recovery scheme requires overhead that includes not only the run-time costs of maintaining the necessary information and executing the detection algorithm but also the potential losses inherent in recovering from a deadlock.

6.6.1. Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock detection algorithm that uses a variant of the resource-allocation graph, called a **wait-for** graph. We obtain this graph from the resource-allocation graph by removing the resource nodes and collapsing the appropriate edges. More precisely, an edge from *Pi* to *Pj* in a wait-for graph implies that process *Pi* is waiting for process *Pj* to release a resource that *Pi* needs. An edge $Pi \rightarrow Pj$ exists in a wait-for graph if and only if the corresponding resource allocation graph contains two edges $Pi \rightarrow Rq$ and $Rq \rightarrow Pj$ for some resource Rq. In Figure 6.7, we present a resource-allocation graph and the corresponding wait-for graph. As before, a deadlock exists in the system if and only if the wait-for graph contains a cycle. To detect deadlocks, the system needs to *maintain* the wait-for graph and periodically *invoke an algorithm* that searches for a