
69

For example, if X = (1,7,3,2) and Y = (0,3,2,1), then Y ≤ X. In addition, Y < X if Y ≤ X

and Y = X.

We can treat each row in the matrices Allocation and Need as vectors and refer to

them as Allocationi and Needi . The vector Allocationi specifies the resources

currently allocated to process Pi; the vector Needi specifies the additional resources

that process Pi may still request to complete its task.

6.5.3.1. Safety Algorithm

We can now present the algorithm for finding out whether or not a system is in

a safe state. This algorithm can be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize

Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

2. Find an index i such that both

a. Finish[i] == false

b. Needi ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m × n2 operations to determine

whether a state is safe.

6.5.3.2. Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be

safely granted. Let Requesti be the request vector for process Pi .

If Requesti [j] == k, then

process Pi wants k instances of resource type Rj. When a request for resources is

made by process Pi, the following actions are taken:

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

70

1. If Requesti ≤Needi , go to step 2. Otherwise, raise an error condition, since the

process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the resources

are not available.

3. Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as follows:

Available = Available–Requesti ;

Allocationi = Allocationi + Requesti ;

Needi = Needi –Requesti ;

If the resulting resource-allocation state is safe, the transaction is completed,

and process Pi is allocated its resources. However, if the new state is unsafe, then Pi

must wait for Requesti , and the old resource-allocation state is restored.

6.5.3.3. An Illustrative Example

To illustrate the use of the banker’s algorithm, consider a system with five

processes P0 through P4 and three resource types A, B, and C. Resource type A has

ten instances, resource type B has five instances, and resource type C has seven

instances. Suppose that, at time T0, the following snapshot of the system has been

taken:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

71

The content of the matrix Need is defined to be Max − Allocation and is as

follows:

 Need

 A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

We claim that the system is currently in a safe state. Indeed, the sequence

<P1,P3, P4, P2, P0> satisfies the safety criteria. Suppose now that process P1

requests one additional instance of resource type A and two instances of resource type

C, so Request1 = (1,0,2). To decide whether this request can be immediately granted,

we first check that Request1 ≤ Available—that is, that (1,0,2) ≤ (3,3,2), which is true.

We then pretend that this request has been fulfilled, and we arrive at the following

new state:

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

We must determine whether this new system state is safe. To do so, we

execute our safety algorithm and find that the sequence <P1, P3, P4, P0, P2> satisfies

the safety requirement. Hence, we can immediately grant the request of process P1.

You should be able to see, however, that when the system is in this state, a

request for (3,3,0) by P4 cannot be granted, since the resources are not available.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

72

Furthermore, a request for (0,2,0) by P0 cannot be granted, even though the resources

are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the banker’s

algorithm.

6.6. Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occur. In this environment, the system may

provide:

• An algorithm that examines the state of the system to determine whether

a deadlock has occurred

• An algorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they

pertain to systems with only a single instance of each resource type, as well as to

systems with several instances of each resource type. At this point, however, we note

that a detection-and-recovery scheme requires overhead that includes not only the

run-time costs of maintaining the necessary information and executing the detection

algorithm but also the potential losses inherent in recovering from a deadlock.

6.6.1. Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock

detection algorithm that uses a variant of the resource-allocation graph, called a wait-

for graph. We obtain this graph from the resource-allocation graph by removing the

resource nodes and collapsing the appropriate edges. More precisely, an edge from Pi

to Pj in a wait-for graph implies that process Pi is waiting for process Pj to release a

resource that Pi needs. An edge Pi → Pj exists in a wait-for graph if and only if the

corresponding resource allocation graph contains two edges Pi → Rq and Rq → Pj for

some resource Rq . In Figure 6.7, we present a resource-allocation graph and the

corresponding wait-for graph. As before, a deadlock exists in the system if and only if

the wait-for graph contains a cycle. To detect deadlocks, the system needs to

maintain the wait-for graph and periodically invoke an algorithm that searches for a

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

