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as many as four tape drives, and process P2 may need up to nine tape drives. Suppose 

that, at time t0, process P0 is holding five tape drives, process P1 is holding two tape 

drives, and process P2 is holding two tape drives. (Thus, there are three free tape 

drives.) 

 

Figure 6-4 Safe, unsafe, and deadlocked state spaces 

 

 

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies 

the safety condition. Process P1 can immediately be allocated all its tape drives and 

then return them (the system will then have five available tape drives); then process 

P0 can get all its tape drives and return them (the system will then have ten available 

tape drives); and finally process P2 can get all its tape drives and return them (the 

system will then have all twelve tape drives available).  

A system can go from a safe state to an unsafe state. Suppose that, at time t1, 

process P2 requests and is allocated one more tape drive. The system is no longer in a 

safe state. At this point, only process P1 can be allocated all its tape drives. When it 

returns them, the system will have only four available tape drives. Since process P0 is 

allocated five tape drives but has a maximum of ten, it may request five more tape 

drives. If it does so, it will have to wait, because they are unavailable. Similarly, 

process P2 may request six additional tape drives and have to wait, resulting in a 
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deadlock. Our mistake was in granting the request from process P2 for one more tape 

drive. If we had made P2 wait until either of the other processes had finished and 

released its resources, then we could have avoided the deadlock. 

Given the concept of a safe state, we can define avoidance algorithms that 

ensure that the system will never deadlock. The idea is simply to ensure that the 

system will always remain in a safe state. Initially, the system is in a safe state. 

Whenever a process requests a resource that is currently available, the system must 

decide whether the resource can be allocated immediately or whether the process must 

wait. The request is granted only if the allocation leaves the system in a safe state. In 

this scheme, if a process requests a resource that is currently available, it may still 

have to wait. Thus, resource utilization may be lower than it would otherwise be. 

 

6.5.2. Resource-Allocation-Graph Algorithm 

If we have a resource-allocation system with only one instance of each resource 

type, we can use a variant of the resource-allocation graph that has been defined 

previously for deadlock avoidance. In addition to the request and assignment edges 

already described, we introduce a new type of edge, called a claim edge. A claim 

edge Pi → Rj indicates that process Pi may request resource Rj at some time in the 

future. This edge resembles a request edge in direction but is represented in the graph 

by a dashed line. When process Pi requests resource Rj, the claim edge Pi → Rj is 

converted to a request edge. Similarly, when a resource Rj is released by Pi, the 

assignment edge Rj → Pi is reconverted to a claim edge Pi → Rj .  

Note that the resources must be claimed a priori in the system. That is, before 

process Pi starts executing, all its claim edges must already appear in the resource-

allocation graph. We can relax this condition by allowing a claim edge Pi → Rj to be 

added to the graph only if all the edges associated with process Pi are claim edges. 

Now suppose that process Pi requests resource Rj. The request can be granted 

only if converting the request edge Pi → Rj to an assignment edge Rj → Pi does not 

result in the formation of a cycle in the resource-allocation graph. We check for safety 

by using a cycle-detection algorithm. An algorithm for detecting a cycle in this graph 

requires an order of n2 operations, where n is the number of processes in the system. 
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If no cycle exists, then the allocation of the resource will leave the system in a 

safe state. If a cycle is found, then the allocation will put the system in an unsafe state. 

In that case, process Pi will have to wait for its requests to be satisfied. To illustrate 

this algorithm, we consider the resource-allocation graph of Figure 6.5. Suppose that 

P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this 

action will create a cycle in the graph (Figure 6.6). A cycle, as mentioned, indicates 

that the system is in an unsafe state. If P1 requests R2, and P2 requests R1, then a 

deadlock will occur. 

 

Figure 6-5 Resource-allocation graph for deadlock avoidance 

 

 

Figure 6-6 An unsafe state in a resource-allocation graph 
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6.5.3. Banker’s Algorithm 

The resource-allocation-graph algorithm is not applicable to a resource 

allocation system with multiple instances of each resource type. The deadlock 

avoidance algorithm that we describe next is applicable to such a system but is less 

efficient than the resource-allocation graph scheme. This algorithm is commonly 

known as the banker’s algorithm. The name was chosen because the algorithm could 

be used in a banking system to ensure that the bank never allocated its available cash 

in such a way that it could no longer satisfy the needs of all its customers. 

When a new process enters the system, it must declare the maximum number of 

instances of each resource type that it may need. This number may not exceed the 

total number of resources in the system. When a user requests a set of resources, the 

system must determine whether the allocation of these resources will leave the system 

in a safe state. If it will, the resources are allocated; otherwise, the process must wait 

until some other process releases enough resources. Several data structures must be 

maintained to implement the banker’s algorithm. These data structures encode the 

state of the resource-allocation system. We need the following data structures, where 

n is the number of processes in the system and m is the number of resource types: 

• Available. A vector of length m indicates the number of available resources of each 

type. If Available[j] equals k, then k instances of resource type Rj are available. 

• Max. An n × m matrix defines the maximum demand of each process. If Max[i][j] 

equals k, then process Pi may request at most k instances of resource type Rj . 

• Allocation. An n × m matrix defines the number of resources of each type currently 

allocated to each process. If Allocation[i][j] equals k, then process Pi is currently 

allocated k instances of resource type Rj . 

• Need. An n × m matrix indicates the remaining resource need of each process. If 

Need[i][j] equals k, then process Pi may need k more instances of resource type Rj to 

complete its task. Note that Need[i][j] equalsMax[i][j] 

− Allocation[i][j]. 

These data structures vary over time in both size and value. To simplify the 

presentation of the banker’s algorithm, we next establish some notation. Let X and Y 

be vectors of length n. We say that X ≤ Y if and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. 
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