
65

as many as four tape drives, and process P2 may need up to nine tape drives. Suppose

that, at time t0, process P0 is holding five tape drives, process P1 is holding two tape

drives, and process P2 is holding two tape drives. (Thus, there are three free tape

drives.)

Figure 6-4 Safe, unsafe, and deadlocked state spaces

At time t0, the system is in a safe state. The sequence <P1, P0, P2> satisfies

the safety condition. Process P1 can immediately be allocated all its tape drives and

then return them (the system will then have five available tape drives); then process

P0 can get all its tape drives and return them (the system will then have ten available

tape drives); and finally process P2 can get all its tape drives and return them (the

system will then have all twelve tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time t1,

process P2 requests and is allocated one more tape drive. The system is no longer in a

safe state. At this point, only process P1 can be allocated all its tape drives. When it

returns them, the system will have only four available tape drives. Since process P0 is

allocated five tape drives but has a maximum of ten, it may request five more tape

drives. If it does so, it will have to wait, because they are unavailable. Similarly,

process P2 may request six additional tape drives and have to wait, resulting in a

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

66

deadlock. Our mistake was in granting the request from process P2 for one more tape

drive. If we had made P2 wait until either of the other processes had finished and

released its resources, then we could have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that

ensure that the system will never deadlock. The idea is simply to ensure that the

system will always remain in a safe state. Initially, the system is in a safe state.

Whenever a process requests a resource that is currently available, the system must

decide whether the resource can be allocated immediately or whether the process must

wait. The request is granted only if the allocation leaves the system in a safe state. In

this scheme, if a process requests a resource that is currently available, it may still

have to wait. Thus, resource utilization may be lower than it would otherwise be.

6.5.2. Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each resource

type, we can use a variant of the resource-allocation graph that has been defined

previously for deadlock avoidance. In addition to the request and assignment edges

already described, we introduce a new type of edge, called a claim edge. A claim

edge Pi → Rj indicates that process Pi may request resource Rj at some time in the

future. This edge resembles a request edge in direction but is represented in the graph

by a dashed line. When process Pi requests resource Rj, the claim edge Pi → Rj is

converted to a request edge. Similarly, when a resource Rj is released by Pi, the

assignment edge Rj → Pi is reconverted to a claim edge Pi → Rj .

Note that the resources must be claimed a priori in the system. That is, before

process Pi starts executing, all its claim edges must already appear in the resource-

allocation graph. We can relax this condition by allowing a claim edge Pi → Rj to be

added to the graph only if all the edges associated with process Pi are claim edges.

Now suppose that process Pi requests resource Rj. The request can be granted

only if converting the request edge Pi → Rj to an assignment edge Rj → Pi does not

result in the formation of a cycle in the resource-allocation graph. We check for safety

by using a cycle-detection algorithm. An algorithm for detecting a cycle in this graph

requires an order of n2 operations, where n is the number of processes in the system.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

67

If no cycle exists, then the allocation of the resource will leave the system in a

safe state. If a cycle is found, then the allocation will put the system in an unsafe state.

In that case, process Pi will have to wait for its requests to be satisfied. To illustrate

this algorithm, we consider the resource-allocation graph of Figure 6.5. Suppose that

P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this

action will create a cycle in the graph (Figure 6.6). A cycle, as mentioned, indicates

that the system is in an unsafe state. If P1 requests R2, and P2 requests R1, then a

deadlock will occur.

Figure 6-5 Resource-allocation graph for deadlock avoidance

Figure 6-6 An unsafe state in a resource-allocation graph

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

68

6.5.3. Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource

allocation system with multiple instances of each resource type. The deadlock

avoidance algorithm that we describe next is applicable to such a system but is less

efficient than the resource-allocation graph scheme. This algorithm is commonly

known as the banker’s algorithm. The name was chosen because the algorithm could

be used in a banking system to ensure that the bank never allocated its available cash

in such a way that it could no longer satisfy the needs of all its customers.

When a new process enters the system, it must declare the maximum number of

instances of each resource type that it may need. This number may not exceed the

total number of resources in the system. When a user requests a set of resources, the

system must determine whether the allocation of these resources will leave the system

in a safe state. If it will, the resources are allocated; otherwise, the process must wait

until some other process releases enough resources. Several data structures must be

maintained to implement the banker’s algorithm. These data structures encode the

state of the resource-allocation system. We need the following data structures, where

n is the number of processes in the system and m is the number of resource types:

• Available. A vector of length m indicates the number of available resources of each

type. If Available[j] equals k, then k instances of resource type Rj are available.

• Max. An n × m matrix defines the maximum demand of each process. If Max[i][j]

equals k, then process Pi may request at most k instances of resource type Rj .

• Allocation. An n × m matrix defines the number of resources of each type currently

allocated to each process. If Allocation[i][j] equals k, then process Pi is currently

allocated k instances of resource type Rj .

• Need. An n × m matrix indicates the remaining resource need of each process. If

Need[i][j] equals k, then process Pi may need k more instances of resource type Rj to

complete its task. Note that Need[i][j] equalsMax[i][j]

− Allocation[i][j].

These data structures vary over time in both size and value. To simplify the

presentation of the banker’s algorithm, we next establish some notation. Let X and Y

be vectors of length n. We say that X ≤ Y if and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

