
57

case, a cycle in the graph is a necessary but not a sufficient condition for the existence

of deadlock. To illustrate this concept, we return to the resource-allocation graph

depicted in Figure 6.1. Suppose that process P3 requests an instance of resource type

R2. Since no resource instance is currently available, we add a request edge P3→ R2

to the graph (Figure 6.2). At this point, two minimal cycles exist in the system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3,

which is held by process P3. Process P3 is waiting for either process P1 or process P2

to release resource R2. In addition, process P1 is waiting for process P2 to release

resource R1.

Now consider the resource-allocation graph in Figure 6.3. In this example, we

also have a cycle:

P1 → R1 → P3 → R2 → P1

Figure 6-2 Resource-allocation graph with a deadlock

However, there is no deadlock. Observe that process P4 may release its instance of

resource type R2. That resource can then be allocated to P3, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the

system is not in a deadlocked state. If there is a cycle, then the system may or may not

be in a deadlocked state. This observation is important when we deal with the

deadlock problem.

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

58

Figure 6-3 Resource-allocation graph with a cycle but no deadlock

6.3. Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three

ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will

never enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

• We can ignore the problem altogether and pretend that deadlocks never occur in the

system.

The third solution is the one used by most operating systems, including Linux

and Windows. It is then up to the application developer to write programs that handle

deadlocks.

To ensure that deadlocks never occur, the system can use either a deadlock

prevention or a deadlock-avoidance scheme. Deadlock prevention provides a set of

methods to ensure that at least one of the necessary conditions cannot hold. These

methods prevent deadlocks by constraining how requests for resources can be made.

Deadlock avoidance requires that the operating system be given additional

information in advance concerning which resources a process will request and use

during its lifetime. With this additional knowledge, the operating system can decide

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

59

for each request whether or not the process should wait. To decide whether the current

request can be satisfied or must be delayed, the system must consider the resources

currently available, the resources currently allocated to each process, and the future

requests and releases of each process.

If a system does not employ either a deadlock-prevention or a deadlock

avoidance algorithm, then a deadlock situation may arise. In this environment, the

system can provide an algorithm that examines the state of the system to determine

whether a deadlock has occurred and an algorithm to recover from the deadlock (if a

deadlock has indeed occurred).

In the absence of algorithms to detect and recover from deadlocks, we may

arrive at a situation in which the system is in a deadlocked state yet has no way of

recognizing what has happened. In this case, the undetected deadlock will cause the

system’s performance to deteriorate, because resources are being held by processes

that cannot run and because more and more processes, as they make requests for

resources, will enter a deadlocked state. Eventually, the system will stop functioning

and will need to be restarted manually.

 Although this method may not seem to be a viable approach to the deadlock

problem, it is nevertheless used in most operating systems, as mentioned earlier.

Expense is one important consideration. Ignoring the possibility of deadlocks is

cheaper than the other approaches. Since in many systems, deadlocks occur

infrequently (say, once per year), the extra expense of the other methods may not

seem worthwhile. In addition, methods used to recover from other conditions may be

put to use to recover from deadlock. In some circumstances, a system is in a frozen

state but not in a deadlocked state. We see this situation, for example, with a real-time

process running at the highest priority (or any process running on a nonpreemptive

scheduler) and never returning control to the operating system. The system must have

manual recovery methods for such conditions and may simply use those techniques

for deadlock recovery.

6.4. Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must hold. By

ensuring that at least one of these conditions cannot hold, we can prevent the

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

60

occurrence of a deadlock. We elaborate on this approach by examining each of the

four necessary conditions separately.

6.4.1. Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one resource must be

non-sharable. Sharable resources, in contrast, do not require mutually exclusive

access and thus cannot be involved in a deadlock. Read-only files are a good example

of a sharable resource. If several processes attempt to open a read-only file at the

same time, they can be granted simultaneous access to the file. A process never needs

to wait for a sharable resource. In general, however, we cannot prevent deadlocks by

denying the mutual-exclusion condition, because some resources are intrinsically non-

sharable.

6.4.2. Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we

must guarantee that, whenever a process requests a resource, it does not hold any

other resources. One protocol that we can use requires each process to request and be

allocated all its resources before it begins execution. We can implement this provision

by requiring that system calls requesting resources for a process precede all other

system calls.

An alternative protocol allows a process to request resources only when it has

none. A process may request some resources and use them. Before it can request any

additional resources, it must release all the resources that it is currently allocated.

To illustrate the difference between these two protocols, we consider a process

that copies data from a DVD drive to a file on disk, sorts the file, and then prints the

results to a printer. If all resources must be requested at the beginning of the process,

then the process must initially request the DVD drive, disk file, and printer. It will

hold the printer for its entire execution, even though it needs the printer only at the

end.

The second method allows the process to request initially only the DVD drive

and disk file. It copies from the DVD drive to the disk and then releases both the

DVD drive and the disk file. The process must then request the disk file and the

printer. After copying the disk file to the printer, it releases these two resources and

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

