
49

in = (in + 1) % BUFFER_SIZE;

count++; }

Consumer

while (1)

{ while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed }

5.1.2. Race Condition

If there are several processes access and manipulate the same data concurrently

and the outcome of the execution depends on the particular order in which the access

takes place, is called a race condition. To guard against the race condition above, we

need to ensure that only one process at a time can be manipulating the variable

counter. To make such a guarantee, we require that the processes be synchronized in

some way.

Situations such as the one just described occur frequently in operating systems

as different parts of the system manipulate resources. Furthermore, as we have

emphasized in earlier chapters, the growing importance of multicore systems has

brought an increased emphasis on developing multithreaded applications. In such

applications, several threads which are quite possibly sharing data are running in

parallel on different processing cores. Clearly we want any changes that result from

such activities not to interfere with one another.

count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

Chapter Five Process Synchronization Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

50

count-- could be implemented as

register2 = count

register2 = register2 - 1

count = register2

Consider this execution interleaving with ―count = 5‖ initially:

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}

Figure 5-1 General structure of a typical process Pi

5.1.3. The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so called

critical-section problem. Consider a system consisting of n processes {P0, P1, ...,

Chapter Five Process Synchronization Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

51

Pn−1}. Each process has a segment of code, called a critical section, in which the

process may be changing common variables, updating a table, writing a file, and so

on. The important feature of the system is that, when one process is executing in its

critical section, no other process is allowed to execute in its critical section. That is,

no two processes are executing in their critical sections at the same time. The critical-

section problem is to design a protocol that the processes can use to cooperate. Each

process must request permission to enter its critical section. The section of code

implementing this request is the entry section. The critical section may be followed

by an exit section. The remaining code is the remainder section. The general

structure of a typical process Pi is shown in Figure 5.1. The entry section and exit

section are enclosed in boxes to highlight these important segments of code.

A solution to the critical-section problem must satisfy the following three

requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish

to enter their critical sections, then only those processes that are not executing in their

remainder sections can participate in deciding which will enter its critical section

next, and this selection cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request

to enter its critical section and before that request is granted.

Chapter Five Process Synchronization Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

52

6. Chapter Six

6.1. Deadlock

In a multiprogramming environment, several processes may compete for a finite

number of resources. A process requests resources; if the resources are not available

at that time, the process enters a waiting state. Sometimes, a waiting process is never

again able to change state, because the resources it has requested are held by other

waiting processes. This situation is called a deadlock. Perhaps the best illustration of

a deadlock can be drawn from a law passed by the Kansas legislature early in the 20
th

century. It said, in part: ―When two trains approach each other at a crossing, both shall

come to a full stop and neither shall start up again until the other has gone.‖

Although some applications can identify programs that may deadlock, operating

systems typically do not provide deadlock-prevention facilities, and it remains the

responsibility of programmers to ensure that they design deadlock-free programs.

Deadlock problems can only become more common, given current trends, including

larger numbers of processes, multithreaded programs, many more resources within a

system, and an emphasis on long-lived file and database servers rather than batch

systems.

6.1.1. System Model

A system consists of a finite number of resources to be distributed among a

number of competing processes. The resources may be partitioned into several types

(or classes), each consisting of some number of identical instances. CPU cycles, files,

and I/O devices (such as printers and DVD drives) are examples of resource types. If

a system has two CPUs, then the resource type CPU has two instances. Similarly, the

resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any

instance of the type should satisfy the request. If it does not, then the instances are not

identical, and the resource type classes have not been defined properly. For example,

a system may have two printers. These two printers may be defined to be in the same

resource class if no one cares which printer prints which output. However, if one

printer is on the ninth floor and the other is in the basement, then people on the ninth

Chapter Six Deadlock Asst.Prof. Dr. Ahmed Hashim

http://code-industry.net/
http://code-industry.net/
http://code-industry.net/
http://code-industry.net/

