lecture 4 Maha ali hussainobject oriented programmillg

¢ 550 AlaSy
Classes and Objects

XIX

WPS Office M3 o basi

lecture 4 Maha ali hussainobject oriented programming

415 CONSTRUCTORS AND DESTRUCTORS

INTRODCTION

C++ provides a special member function called the constructor which enables an
object to initialize itself when it is created. This is known as automatic initialization of
objects. It also provides another member function called the destructor that destroys the
objects when they are no longer required.

4.15.1 Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its
class. A constructor is a member function that is executed automatically whenever an
object is created. It is special because its name is the same as the class name. The
constructor is invoked whenever an object of its associated class is created. It is called
constructor because it construct the values of data members of the class.

A constructor is declared and defined as follows:
// class with a constructor
class integer

{
int m,n;
public:

integer (void); // constructor declared
%
integer :: integer (void) // constructor defined
{

m=0; n=0;
}

when a class contains a constructor like the one defined above , it is guaranteed that an
object created by the class will be initialized automatically. For example, the declaration

integer int1; //object int1 created
not only creates the object int1 of type integer but also initializes its data members m and n
to zero.
A constructor that accepts no parameters is called the default constructor. The default
constructor for class A is A:A(). If no such constructor is defined , then the compiler
supplies a default constructor. Therefore a statement suchas (Aa;)

Invokes the default constructor of the compiler to create the object a. The constructor

functions have some special characteristics:
XX

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming
eThey should be declared in the public section.

eThey are invoked automatically when the objects are created .

eThey do not have return types, not even void and therefore, they cannot return values.
eThey cannot be inherited, though a derived class can call the base class constructor.
eLike other C++ functions, they can have default arguments.

eWe can be defined as inline function

Feldl dls °

&@mdla&o)u&;bwlélpwybﬂ|J.&‘w.uc. °
g_Q.uouA&‘S@M'MO}@LALQgLCM'Mdeu.c,o_)L.c‘umg' 1

-
3

4.15.2 Parameterized Constructors

the constructor integer (), defined above, initializes the data members of all the objects to
zero. However, in practice it may be necessary the various data elements of different
objects with different values when they are created. C++ permits us to achieve this objective
by passing arguments to the constructor function when the objects are created.

class integer

{
int m,n;
public:

integer (intx,inty); // parameterized constructor
%
integer :: integer (int x, inty) // constructor defined
{

m=x; N=y;
}

in above program we must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

eBy calling the constructor explicitly.
eBy calling the constructor implicitly.

The following declaration illustrates the first method:
integer int1= integer(0,150); //explicit call
XXI

WPS Office JY5 (1o Jaasi

lecture 4 Maha ali hussainobject oriented programming
This statement creates an integer object int1 and passes the values 0 and 150 to it.

The second is implemented as follows:
integer int1(0,150); //implicit call (shorthand)

/11111111111111111111111111/ Class with Constructors//////////1111111111111111]/
#include <iostream>

using namespace std;

class integer

{ int m,n;
public:
integer (int, int); //constructor declared
void display (void);
inteéer :integer (int x, inty) // constructor defined

m=x; n=y; }

void integer :: display (void)
{ Cout<<nm=u <<m <<n\nn;
Cout<<nn=u <<n <<u\nu;

int main ()

{
integer int1(0,100); //implicit call
integer int2= integer(25,75); //explicit call
cout << “\n OBJECT1” << “\n”
int1.display();
cout << “\n OBJECT2" << “\n”";
int2.display();

return O;

}

The output of above program is:

OBJECT1
m=0

n= 100
OBJECT2
m =25
n=75

EXAMPLE

#include <iostream>

XXl

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming
using namespace std;

class operations
{

float a,b,c; int ch;
public:
operations();
void result();

h

operations ::operations()

{

cout<<"Mathematical Operations \n";

cout<<" 1- Addition \n";

cout<<" 2- Subtraction \n";

cout<<" 3- Multiplication \n",

cout<<" 4- Division \n";

cout<<" Please Enter your choice : \n"

cin>>ch;

cout<<" Please Enter two Values a and b \n";

cin>>a>>b;

}

void operations:result()

{

switch (ch)

{

case 1: c=a+b; cout<<a<<"+"<<b<<"="<<c<<endl|;break;

case 2 :c=a-b;cout<<a<<"-"<<b<<"="<<c<<endl; break;

case 3: c=a*b;cout<<a<<"*"<<b<<"="<<c<<endl; break;

case 4: if(b!'=0){ c=a/b;cout<<a<<"/"<<b<<"="<<c<<endl;}
else cout<<"the result of division is infinite ";

defult :cout<< "error choice";

} o}

int main()

{ intkey;

do

{ operations op;

op.result();

cout <<"to terminate program write key= 0 otherwise enter any value to key \n";
cin>>key; }while (key !=0);

return 0; }

XXl

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming

4.15.3 Destructors
A destructor, as hame implies, is used to destroy the objects that have been created by a
constructor. Like a constructor, the destructor is a member function whose name is the
same as the class name but is preceded by a tilde (~). For example, the destructor for the
class integer can be defined as shown below:

~integer() { }
A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case may
be) to clean up storage that is no longer accessible.

-aagll dls
Glg e Sy o o P8 Flasl wie Byala gleatwl @y Al e 3y)le o
20y

/111111111111111/// implementation of destructors////////111111111111/
#include <iostream>
using namespace std;
int count=0;
class alpha
{
public:

alpha()
{

count++;
cout<< “\nNO.of object created “ << count ;

}
~alpha()
{

cout<< “\nNO.of object destroyed “ << count ;
count--;

}
%

int main()

{

cout<< “\n\nEnter Main\n;
alpha A1,A2,A3,A4;
{

cout << “\n\nEnter Block1\n";
alpha A5;

XXIV

WPS Office /M5 (o basi

}

}

cout << “\n\nEnter Block2\n";

alpha A6;

lecture 4 Maha ali hussainobject oriented programming

cout<< “\n\nRE-Enter Main\n; return O;

» Main

ohject
ohject
ohject
ohject

» Blockl

ohject

+ Block2

ohject

RE-Enter Main

NO.
NO.
NO.
.of
NO .
NO.

NO

of
of
of

of
of

ohject
ohject
ohject
ohject
object
ohject

B | CAUSERS\USER\DESKTOP\TC\alpha.exe

created
created
created
created

created

created b6

destroyed
destroyed
destroyed
destroyed
destroyed
destroyved

#include <iostream>
#include <conio.h>

using namespace std;

int count=0;
class alpha

{

public:
alpha()
{

count++;

cout<< "\nNO.of object created " << count;

}

~alpha()
{

cout<< "\n NO.of object destroyed " << count ;

XXV

WPS Office J¥& ;o

Liasi

%

int main()

{

}

{ cout<< "\n\nEnter Main\n";

}

count--;

alpha A1,A2,A3,A4;
cout << "\n\nEnter Block1\n";

alpha AS5;
cout << "\n\nEnter Block2\n";

alpha A6;
cout<< "\n\nRE-Enter Main\n";

}

getch(); return 0;

lecture 4 Maha ali hussainobject oriented programming

The output of a sample run of Program 6.7 is shown below:

EN

No.
No .

No

No.

EN

No
No

TER

of
of
.of
of

TER

.0f
.of

ENTER

No
No

RE-ENTER MAIN

Na
Na
No

.of
.of

.of
.of
0T

No.of

MAIN

object
object
object
object

BLOCK1

object
object

BLOCK2Z

object
object

object
object
object
object

created
created
created
created

£l N e

created 5
destroyed

created 5
destroyed

destroyed
destroyed
destroyed
destroyed

= W e

Z-?J.gﬂg Ll J'g.s L)o|_c;.>’-

~ daMsy B pagl dls (Ko il qunl uds Jass .1

public slell L3lasll cgtun y 0481325 @y
cly Al g0 38T clid] (Say .3

1hdd 3aslg san s clid] (Say 4

gox) gloil lag ud 5

XXVI

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming
4.15.4 Multiple Constructors In A Class
so far we have used two kinds of constructors. They are:

integer(); //No arguments

integer(int, int); //two arguments
in the first case, the constructor itself supplies the data values and no values are passed by
the calling program. In second case, the function call passes the appropriate value from
main (). C++ permits us to use both these constructors in the same class. For example, we
could define a class as follows:

class integer

{
int m,n;
public:
integer() {m=0;n=0;} //constructor 1
integer(inta,intb)
{m=a;n=b;} //constructor 2
integer(integer &i)
{m=i.m;n=i.n;} //constructor3
}.

this declares three constructors for an integer object. The first constructor receives no
arguments, the second, receivers two integer arguments, and the third receives one integer
object as an argument. For example, the declaration:

integer I1;
Would automatically invoke the first constructor and the set both m and n of I1 to zero. The
statement

integer 12 (20, 40);
Would call the second constructor, which will initialize the data members m and n of 12 to 20
and 40 respectively. Finally, the statement

integer 13 (12);
would invoke the third construct which copies the value of 12 into I3. That is, it sets the value
of every data element of I3 to the value of corresponding data element of 12. Such a
constructor is called the copy constructor.

When more than one constructor function is defined in a class, we say that the constructor
is overloaded.

/1111111111111111111111111111] Overloading Constructor ///////1/1111111111111111111111]
Exercises
1. Create a class that imitates part of the functionality of the basic data type int. Call the
class Int (note different capitalization). The only data in this class is an int variable.
Include member functions to initialize an Int to 0, to initialize it to an int value, to display it
XXVII

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming
(it looks just like an int), and to add two Int values.
Write a program that exercises this class by creating one uninitialized and two initialized
Int values, adding the two initialized values and placing the response in the uninitialized
value, and then displaying this result.(Instead of having z=x+y, and x,y and z are int , we
could have z.add(x,y) and x,y and z are of type Int.)
Solutions to Exercises
1.
/] ex6_1.cpp
// uses a class to model an integer data type
#include <iostream.h>
class Int //(not the same as int)
{
private:
inti;
public:
Int() //create an Int
{i=0;}
Int(int X) //create and initialize an Int
{i=X}
void add(Int i2, Int i3) //add two Ints
{i=i2.i+i3.i;}
void display() //display an Int
{cout <<i; }

7

void main()

{ Int Int1(7); //create and initialize an Int
Int Int2(11); //create and initialize an Int
Int Int3; //create an Int

Int3.add(Int1, Int2); //add two Ints

cout << “\nInt3 = “; Int3.display(); cout << endl; }

4.15.5 copy constructor
a copy constructor is used to declare and initialize an object from another object. For
example, the statement

integer L2(L1);
would define the object L2 and at the same time initialize it to the value of L1. Another form
of this statement is

integer L2=L1,

/1111111111111111111111111111111 copy constructor /////111111111111111111111]
XXVIII

WPS Office /M5 (o bsasi

lecture 4 Maha ali hussainobject oriented programming
#include <iostream.h>
class code

{
int id;
public:
code() {} // constructor
code (int a) {id = a;} //constructor again
code (code & x) //copy constructor
{
id=x.id;
}
void display(void)
{ cout << id; }
7
main()
{
code A(100);
code B(A);
code C=A;
code D;
D=A;
cout<<"\n id of A: “; A.display();
cout<<"\n id of B: “; B.display();
cout<<"\n id of C: “; C.display();
cout<<"\n id of D: “; D.display();
}
/11111111111111111111/program /////111111111111111111]

ecopycon.cpp

// initialize objects using default copy constructor

#include <iostream>

using namespace std;

class Distance //English Distance class

{

private:

int feet; float inches;

public:

Distance() : feet(0), inches(0.0) //constructor (no args)
//Note: no one-arg constructor

Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)
{}
void getdist() //get length from user

XXIX

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming
cout << “\nEnter feet: “; cin >> feet;
cout << “Enter inches: “; cin >> inches;

}
void showdist() //display distance

{ cout << feet << “\’-" <<inches << \"’; }
%
int main()

{

Distance dist1(11, 6.25); //two-arg constructor
Distance dist2(dist1); //one-arg constructor
Distance dist3 = dist1; //also one-arg constructor
//display all lengths

cout << “\ndist1 = “; dist1.showdist();

cout << “\ndist2 = “; dist2.showdist();

cout << “\ndist3 = “; dist3.showdist();

cout << endl;

return O;

}

ecopycon.cpp
// initialize objects using default copy constructor
#include <iostream>
using namespace std;
class Distance //English Distance class
{
private:
int feet;
float inches;
public:
//constructor (no args)
Distance() : feet(0), inches(0.0)
//Note: no one-arg constructor
Distance(int ft, float in) : feet(ft), inches(in) //constructor (two args)

{}

void getdist() //get length from user
{
cout << “\nEnter feet: “; cin >> feet; cout << “Enter inches: “; cin >> inches; }
void showdist() //display distance
{ cout << feet << “\’-" << inches << \"’; }
%
int main()
XXX

WPS Office /M5 (o basi

lecture 4 Maha ali hussainobject oriented programming

{

Distance dist1(11, 6.25); //two-arg constructor
Distance dist2(dist1); //one-arg constructor
Distance dist3 = dist1; //also one-arg constructor

//display all lengths

cout << “\ndist1 = “; dist1.showdist(); cout << “\ndist2 = “; dist2.showdist();
cout << “\ndist3 = “; dist3.showdist(); cout << end];

return O;

}

XXXI

WPS Office /M5 (o basi

