Mustansiriayah University
Collage of Education
Computers Science Department

s NOPERATING
- | SUSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2019-2020



6.6. Deadlock Detection (—iS)

® If a system does not employ either a deadlock-prevention or a
deadlock avoidance algorithm, then a deadlock situation may

OCCuUr.
Deadlock ) cuiad i aie ey )l sa calagy o) jigy Y alaill S 13 ©
. Deadlock Il cuasy () (Saad

® In this environment, the system may provide:

- Detection algorithm: An algorithm that examines the state of the

system to determine whether a deadlock has occurred

- Recovery scheme: An algorithm to recover from the deadlock.
1A O pUaill (Sad Dl 038 4 €
o o5 3 Lagh apantl ol il i i EUEENESSUENEEE Wi
. Deadlock
. Deadlock I (s« 3o iu¥l ) aliill 48, yha -



6.6.1. Single Instance of Each Resource Type
e Baal gdlls e (o giad Al ) gall

o |f all resources have only a single instance, then we can define a deadlock
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

) Qs ol el sa paad LiSed ¢ i aaly e o (g siad 3 ) sall area cuilS 13

wait-for graph = resource-allocation graph ¢ 1 22358 S Deadlock
.edges Ly nodes ) Al Gk e ade Juass

® More precisely, an edge from Pito Pjin a wait-for graph indicates that process
Pris waiting for process £fto release a resource that A7 needs.
sk process Pi ! o) ) wait-for graph ) & Pj &l Pi ¢ edged) s ¢ (330 ety ©
Pi. 4aliad (g3l o 5all 33ULY process Pj -l
® An edge Pi — Pjexists in a wait-for graph if and only if the corresponding
resource allocation graph contains two edges P/ — Rqg and Rqg — PjJ for some

resource Rq .

resource allocation ) (S 13) Lsé 5 13) wait-for graph ) 4 Pi — Pj edge 2> 5 ©
RQ. 25!l J=2dRg — Pj sPi —> Rq edges I ¢ ol e s 5is graph contains



Single Instance of Each Resource Type Cont.

In Figure 6.8, we present a resource-allocation graph and the corresponding wait-for graph.

@
: | |~ R,
. - -
&0 Pe @) P
T L= \PE s
] (P )
[ G L =
/s Hs
(@) (b)
Resource-Allocation Graph Corresponding wait-for graph

® As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait
for graph and periodically invoke an algorithm that searches for a cycle in the
graph.

e s sisy wait-for graph ) oS 13) ks 5 13) 2Usill Deadlock ) as s ¢ bl A LS ©
ele xinl g wait-for graph b Llaay) ) oUsill ~Usy ¢ Deadlock JI LSy | cycle
el G ocycle ) pe Gai o) s0 JSAr A )l sa



0.0.Z2. Several Instances oT a rResource lype
Y B (g giad il 3y gall

In a system with several instances of resources types, A deadlock detection
algorithm that is applicable to such a system is used. This algorithm employs
several time-varying data structures that are similar to those used in the banker's
algorithm.
agilie Uy JSLa Calh g 4 )l sall sda 3l gall (e VS B2 e S siny Al ?w\c;jfm
banker 4 4w )5
® Available. A vector of length /m indicates the number of available resources of each

type
& 8 JS e giall oyl sall 2ae ) pal m J shall 45
® Allocation.” An nx m matrix defines the number of resources of each type
currently allocated to each process
processdﬂgdeCpSJM\ lsall e A S X 77 A8 gheas

® Request. An nx mmatrix indicates the current request of each process. If Request
[711/] = & then process A is requesting A more instances of resource type R,
O ) Request[i1[f] = k, <l oS 13, process S @l A 28 71X /1 4d sias
. Rj sl &Y (3 k sy process Pi -l



Detection Algorithm

The detection algorithm described here simply investigates every possible

allocation sequence for the processes that remain to be completed.
Ay JaiSE ol ) processesd! (Sae anadt Julud S8 Al L 4oz sall CadSU G ) i ans

1. Let Workand Finishbe vectors of length /77and 7, respectively. Initialize
ola) oS 20 YY) agadd | n Jshall Finish 4aaidll s | m Jshll Work 4aiall Lual (i il
Work = avarlable and
Finishfi] = false fori=0, 1, ..., n— 1.
If Allocation # 0, then and Finishfi]= false, otherwise Finishfi]= true.
2. Find an index i such that both
a. Finishfi] ==false
b. Need i < Work
If no such i exists, go to step 4.
3. Work = Work + Allocation i
Finishfi] = true
Go to step 2.

4. If Finishfi] = truesome i, 0 </ <n then the system is in a deadlocked state. Moreover, if
Finishfi] == false, then process Pris deadlocked



Example of Deadlock detection

A system with:

-5 processes P, through P,;

-3 resource types (A, B, C).

-A (7 instances), B (2 instances), and C (6 instances)

Suppose that, at time T,, we have the following resource-allocation state:

ABC ABC ABC
PO 010 000 000
Pl 200 202
P2 302 000
P3 211 100
P4 002 002

O A S Qb g Sa <P P, Py Py P> deluill daxy ) gadl 8 L : ddasDle
Y sl Deadlock Jl s A ¢ 5%y sl



Example of Deadlock detection Cont.
-Jall
ki (0.0 0) 4 Request ) o S| Process PO < fai <P Py, Py, Py, P> edull Jaa3l Laxie
40l s ) sane € ) sall e gy 2l oLl dmy g A3l 5 58 siall 3 ) sally i)
New available=Available + Allocation

010=000+010
eleiil any g 492l 5 A giall 3 ) gally 2dill] audaiend (0 0 0) A Request A o) aad6 | Process P2 dudedlly jains
Al B ) sane CilS (Al 3 ) gall aa yy Luasl)
New available=Available + Allocation

312=010+302

g 9 24l oy g Lealiag Sl o)) gall eUac) 238 (1 0 0) A Request ) o) 1aa36 | Process P3 dededlly jaiusd
Mﬂajjmg"_uls‘fj\ JJ\JAS\ c;‘)g.l..)s.\.\j\ Lt
New available=Available + Allocation

523=312+211

2y 9 28I oy g Lealiag ) o)) gall elac) 238 (2 0 2) A Request ) o) 1aa36 | Process P1 dededll jaius
QJ]‘SJJM.A@\S‘_;\S\ JJUAM CA}M\ AP
New available=Available + Allocation

723=523+200

Ay g 2L oy g Lealiag Al o)) gall clac) 23 (0 0 2) 4 Request 2! o) 135 | Process P4 dedadlly et
@ﬂﬁ)p&.ﬂ&&m JJ\}AM & aiil) ¢ lgil
New available=Available + Allocation

725=723+002



Example of Deadlock detection Cont.

We claim that the system is not in a deadlocked state. Indeed, If we
execute our algorithm, we will find that the sequence <P, P,, P, P,
P,> results in Finishfi]= true for all /.

. Deadlock J) s & (pd Ui aUaill
) o ale iy <Py, Py, Py, Py, P> edasl) () an Age 3 ) i) 2 o3 13
| ISV Finishfi] = true



Example Cont.

Suppose now that process P, makes one additional request for an instance
of type C (0 0 1). The Request matrix is modified as follows:

A 4850008 (0 0 1) o C el (e 2al g8 50 ALl il Jee process P, I o oY) s
oL LS &aat e Request

,Deadlock ) Al & Jaxy o oUaill Lia ABC
3 )l sall N mualy P1 AL 8 g ) e a8l PO 000
1 <8 ) New available = (0 1 0)xaall Pl 202
GSa¥ (00 1) s» process P2 ! Request P2 001
& paill Jaay Gl g Lealing (Al 2 ) sall P3 100

. process P2 11 ;& Deadlock 4 4lls P4 002

We claim that the system is now deadlocked. Although we can
reclaim the resources held by process P,, the number of available
resources 1s not sufficient to fulfill the requests of the other
processes.

Thus, a deadlock exists, consisting of processes P,, P,, P, and P,.



6.7. Recovery from Deadlock

* When a detection algorithm determines that a deadlock exists, several
alternatives are available.
- One possibility is to inform the operator that a deadlock has occurred and to
let the operator deal with the deadlock manually.
- Another possibility is to let the system recover from the deadlock
automatically.
Jila sae i gi (Deadlock Mla g s CdSH A ) sA 223 Ladie
M ae dalaily Jriiall el s Deadlock  Ala dsany Jadall £30) s caVLlaia) aal-
. Lsyu Deadlock
Wil Deadlock J) s (e ilailly alaill ~Leadl & Jias o Al 204 ellia-

® There are two options for breaking a deadlock (methods).
1. One is simply to abort one or more processes to break the circular wait.
2. The other is to preempt some resources from one or more of the deadlocked
RABCESSES. Deadlock J) ,=S1 o LA el @
.circular wait ) & &I sl s2a) 5 process (abort) jsiad dbluy s aaly 1

) Led &as Al processes ) (o« ST gl 3aal g (e 2 ) sall zany (L) &UaﬁiJ A AY, 2
Deadlock




6.7.1.Process termination

e To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

1. Abort all deadlocked processes.
2. Abort one process at a time until the deadlock cycle is eliminated.

¢ OdigyHhall WS 8, iy Hlall (saa) aadiug « process Jwal sl Hsad sk o= Deadlock ) A 3y
Deadlock ) L Sas Al processes J! daadiall o)) gall aoas aUaill 3 iy

. Deadlock JI Lé & Al processes ) g Jlaal gl j4las 1

. Deadlock ) 353 (e palddll ohy Jia 3 e JS & 33a) 5 process Jwal 5l jilad 2

e Aborting a process may not be easy. If the process was in the midst of updating a
file, terminating it will leave that file in an incorrect state. Similarly, if the
process was in the midst of printing data on a printer, the system must reset the
printer to a correct state before printing the next job.

B ¢ Calo Enaat aad 4 process Al S 1) g ¢SS Y M8 process Jwal gl sl e
GUly mnd & process Al il 1Y) ¢ Jiadlg damia pe Alls 8 calal) 12 & yiu selgd)
delils 8 dagaall DAl L) dadlal) e sale) pUaill e i ¢ dadlall e de Lkl
Aalll) dagdll



6.7.1. Process termination Cont.

If the partial termination method is used, then we must determine which deadlocked
process (or processes) should be terminated. This determination is a policy decision,
similar to CPU-scheduling decisions.

cll Led caas Al processes sl process el wass lale cand ¢ A 3all olesY) 43y 5k aladial 513 e
43S sall Aallaall Bas 5 A gan l a1 Ao ¢ a8 o8 sl 138 e 5led) &3 o aag Deadlock

Many factors may affect which process is chosen, including:
seled) (a yal process A sl e i jules sac clllia o
1. What the priority of the process is ?
2. How long the process has computed and how much longer the process will compute
before completing its designated task
3. How many and what types of resources the process has used (for example, whether the
resources are simple to preempt)
4. How many more resources the process needs in order to complete

5. How many processes will need to be terminated
6. Whether the process is interactive or batch






