Mustansiriayah University
Collage of Education
Computers Science Department

s NOPERATING
= | SUSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2019-2020



6.5. Deadlock Avoidance

m Deadlock avoidance requires that the system has some additional a prior
information available

Aalial) (Aipsall) Lilial) Cila slaall (any oUaill g2l 355 o) Deadlock JI cuias callas,

« Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need

(e aaliag 8 e o5 ==Yl 2l je process IS ol of sala &Y gl zAsaill llaty
JJ\)AS\
« The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a circular-

wait condition
circular-wait & s

® Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes
=) aall 5 ¢ duacadall g daliall o)) gall 3 IR e 3 ) sall Ganads Alla Cay jed Al
processes ) i« « sl



6.5.1. Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system is in a

safe state only if there exists a safe sequence.

S (@aﬁg‘j\ all As) process JS 2 )l sl anads aUaill (el IS 13) A Al ¢ 5
Al (6 ¢y AST IS | Deadlock ) cuiad akatin aUaill ay iy daae Judad
ol b Sllaa 1S 13) Jass 4] Al

® The system is in a safe state if there exist a sequence of processes <P/, P2, .., Pn>
of all the processes in the systems such that for each Pi, the resource requests
that Pi, can still request, can be satisfied by the currently available resources plus
the resources held by all Pj, with j <'i.

<Pn «.. P2 P1 > processesd! Jula cllia o< 13) dial Ala A AUail) ) &
AUl LS s dadal) 8 processes -l gl

Adla 58 giall o) sall (e Ll Sy Al 5 2) 0 bl 30 o)) ;b process Pi -l J8
J <i 0SS ol e process Pjdl L clua o) badiag Al o ) gal) ) ddlzal



6.5.1. Safe State Cont.

That is:
- If P, resource needs are not immediately available, then P,
can wait until all P, have finished

Pj A1 S e o) () (Pi) S Lo cand Ll 5 8 5 P Lgalind il o 5f sl oS5 6 13

- When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

(et 5 Ll B ) saaall 3 ) sall mpan ) i

 When P; terminates, P;.; can obtain its needed resources,
and so on

il iy 5 Lealing il 3l sall e J geanl) lsind Pj+1 ) Pj ) i Latie



Basic Facts

If a system Is in a safe state =» no deadlock

If a system is in unsafe state =» possibly of deadlock
e Not all unsafe states are deadlocks.

unsafe
deadlock

/




To illustrate, Consider a system with 12 magnetic tape drives and 3 processes
(P, P, andP,)
Process P, requires 10 tape drives, (require= glisy 5 llay)
Process 2, may need as many as 4 tape drives, and
Process 2, may need up to 9 tape drives.
Suppose that, at time ¢,
- Process 7, is holding 5 tape drives, (holding= ey ol Laiiay)
- Process P, is holding 2 tape drives, and
- Process A, is holding 2 tape drives.
(Thus, there are 3 free tape drives.)

Available resources = total resources in the system — total holding resources
=12-9=3

Current Needs= Maximum Needs- Allocation.

Maximum Needs Current Needs Allocation
(requires) (holding)

10 5 5

4 2 2

9 7 2



Maximum Needs Current Needs Allocation
(requires) (holding)
B - s s

- - z z
- 7 z

- At time t,, the system is in a safe state.
The sequence < P,, P, p,> satisfies the safety condition.

- Process P, can immediately be allocated all its tape drives
(because the system still have 3 available tape drives) and then
return them (the system will then have (3+2) = 5 available

tape drives;

- Then process P, can get all its tape drives and return them (the
system will then have (5+5) =10 available tape drives);

- And finally process P, can get all its tape drives and return them
(the system will then have all 12 tape drives available).



A system can go from a safe state to an unsafe state.

- Suppose that, at time t,, process P, requests and is allocated
one more tape drive.

Maximum Needs Current Needs Allocation
(requires) (holding)
. s s

I z z
New requests n 9 6 3

The system is no longer in a safe state.

At this point, only process P,, can be allocated all its tape drives. When
it returns them, the system will have only 4 available tape drives. Since
process P, is allocated 5 tape drives, but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process P, must
wait. Similarly, process P, may request an additional 6 tape drives and
have to wait, resulting in a deadlock.

layey Ladic 5 tape drives 2)sall (e 4aliad L Ll paady ) (S process P1 - ks ¢ ddaaill s3a 2ie
tape (x5 4 awis S process PO ) ki dslic tape drives (w4 2Uaill sl oS ¢

axl 15k s tape drives (e 5 ks 43l tape drives e 10 bl a8 zlia,y 415 drives
bisie e a Ladstape drives o« 6, process P2 i callas s ¢ Jiallyy ki of sy a5
. Deadlock 4 &isas ) g3 Lea o« JUTY) a3l il



AVOIDANCE ALGORITHMS

AUl 235 DEADLOCK I & gas iad Silae j )l 2 @
a3l sA plasiul &l 3 ) sall & 53 e 2al 5 (Uls) diie o (g 5iag oL (IS 131 -1

RESOURCE-ALLOCATION GRAPH

dra ) 52 aladiil 25 3 ) gall £ gl Badmta (lla) GO e (g giag aUail) IS 13 -2
USE THE BANKER’S ALGORITHM

® SINGLE INSTANCE OF A RESOURCE TYPE
® USE A RESOURCE-ALLOCATION GRAPH

® MULTIPLE INSTANCES OF A RESOURCE TYPE
® USETHE BANKER’S ALGORITHM



6.5.2. Resource-Allocation Graph Algorithm

If we have a resource-allocation system with only one instance of each
resource type, we can use a variant of the resource-allocation graph for
deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim
edge

resource- LSad ¢ 2 gl &\jﬁ e J ks ol e ae o)l gl Ganadd alas Wal (IS 1)) @
k=l o3 A assignment edges I 4d=).Deadlock ) Als <iail allocation graph
.claim edge .«« edge -l (e v g 5 alasiu) Jié Wl

® Claim edge Pr — RJindicates that process P/, may request resource ~J, at
some time in the future. This edge resembles a request edge in direction, but
IS represented in the graph by a dashed line.

iy & Rj sl (illai 8 « process PiJdl ol J e Claim edge Pi — Rf
by Sl sl (8 Lelid o oSl < oladV) & request edge ) snaall edge l sa 40ds | i)

ke



6.5.2. Resource-Allocation Graph Algorithm Cont.

1- When process Pi requests resource Rj, the claim edge Pi — Rj is
converted to a request edge.

request edge J' claim edge 1 st 21 Rj jaas Pid) alhay baaie -]

2- Similarly, when a resource Rj is released by Pi, the assignment edge
Rj — Pi is reconverted to a claim edge Pi— Rj.

claim ) assignment edge Jisisile) aid Pidl Jd ge Ri Jaadl sy ol Glay Laxie 5 -
edge

Suppose that process Fr requests resource AJ. The request can be granted only if
converting the request edge A/ — RJto an assignment edge /7 — FPrdoes not result in
the formation of a cycle in the resource-allocation graph.

If no cycle exists, then the allocation of the resource will leave the system in a safe
state. If a cycle is found, then the allocation will put the system in an unsafe state.

A Qisad xie cycle zin ol 1) Jadd calhll xie (Say . R 254!l ki process Pidl ol (i)
Sl aw M 2 assignment edge R — Pi S request edge Pi — Rj

U ¢ cycle e sl 2313 safe Al A aUaill & jis 3 ) gall Ganads (b ¢ cycle 29 pae Al 3
.unsafe state dla 8 2Uaill acass anaddl)



EXAMPLE: To illustrate this algorithm, we consider the resource-allocation
graph of Figure 6.5.

Figure 6.5 Resource-allocation graph for \
deadlock avoidance G @

] s

Suppose that P, requests R,. Although R, is currently free, we cannot
allocate it to P,, since this action will create a cycle in the graph (Figure
6.6). A cycle indicates that the system is in an unsafe state.

If P, requests R,, and P, requests R,, then a deadlock will occur

=z

&) Amnadi WiCa ¥ (Jsane e )llla #U R2A () (e a2 ) e s R2 )50 ki P21 o (i 8l
O & cycle d i | (6.6 JSall) Al an )l 4 cycle sl ) oeloal) 13 g dua (P2
.unsafe dx & .Uaill

deadlock J) ¢aapidcR1 290 llai p2 3 R2 350 P1 ) udla 1)

R,

Figure 6.6 An unsafe state in a resource- /;/ =

allocation graph N

~
)




End of Part 3




