Mustansiriayah University
Collage of Education
Computers Science Department

s NOPERATING
=~ | SUSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2019-2020



6.3 METHODS FOR HANDLING DEADLOCKS

« We can deal with the deadlock problem in one of
three ways:
1. Ensuring that the system will never enter a
deadlock state.
- Deadlock prevention (&)
- Deadlock avoidance («ixd)
2. Allow the system to enter a deadlock state and then
recover.
3. Ignore the problem and pretend that deadlocks
never occur in the system.

ol 3kl saaly deadlockd) e ae Jalaill L
. deadlockd s I Jasy o alaill o o Sl 1
deadlock JI x -
deadlock ) sl -
Adallas A deadlock J) s J iy aUaill ~ladd) 2
Al 1ol sy Y deadlock I b el s ASad Jalssi 3




1- To ensure that deadlocks never occur, the system can use either:
- a deadlock prevention or

- a deadlock avoidance scheme.

» Deadlock prevention provides a set of methods to ensure that at
least one of the necessary conditions cannot hold. These methods
prevent deadlocks by constraining how requests for resources can

be made.

el jgare Glaal Gkl (e de seas deadlock ) Als xia 85
a3k e deadlock ) Gokll sda adad, 4y )5 piall gl (pe JBY
) sall Sl 0385 488



« Deadlock avoidance requires that the operating system be given additional
Information in advance concerning which resources a process will request
and use during its lifetime. With this additional knowledge, the operating
system can decide for each request whether or not the process should wait.

o) sall ol Gate dlia) Glaglee Qi alas cUae) Deadlock -l cuiad callay

Aol (K ¢ ALYl 4 prall 030 s G, Lefhn 38 SIS process I Leexdiudy Leallaia
Y ool laiv process 4 <ilS 13 L b JS1 s o) Jaeal)

To decide whether the current request can be satisfied or must be delayed, the
system must consider the resources currently available, the resources currently

allocated to each process, and the future requests and releases of each process.

daliall o)) sall el yo allaill e oy ¢ aliali o sl callall 4l Sy oIS 13 e aaal
JO Adaiddl @l jlaayly lllhlly cprocess JN W daaddll 3jlgldly ¢ Wl
. process



If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm, then a deadlock situation may arise. In this environment, the
system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from the

deadlock (if a deadlock has indeed occurred).

A Gaany o Ly a8 ¢ deadlock ) Ala cuind ol aie 3k (e 5] adiing Y laill (1S 13
deadlock

1l )l sa i allaill Sy ¢ Al oda

deadlock 3 ) deas 38 S 13 Lo ypasl oUsil) Alls asdi -

.(deadlock J) J=éls & 13)) deadlock ) da sl Asdled 4y )l say -

In the absence of algorithms to detect and recover from deadlocks, we may
arrive at a situation in which the system is in a deadlocked state yet has no way of
recognizing what has happened.

s S daal 8 ¢ Lgia ALl 5 deadlock ) @¥la e adSH Cilia )l 58 39 g a2 Al b
oo Lo e ol 46 )l a6 Y (S5 deadlock ) Al 8 Uaill 4 ) S5



6.4. DEADLOCK PREVENTION

m For a deadlock to occur, each of the four necessary conditions must hold. By
ensuring that at least one of these conditions cannot hold, we can prevent the
occurrence of a deadlock. We elaborate on this approach by examining each of the
four necessary conditions separately.

e 4y el A W) D il e S 83 s « deadlock A Gsaa Jad e
J\ k_\jhcmmc&_mmu\u&.\y.kjﬂ\ oJAuAdﬁ\}“LAQ \JA\}LLJML)‘UAJSM\ d)\AuAj
. deadloc
Jeadie JS0y 4 5 pall A )V dag il (e IS and A e el 108 a5y o g8

® 6.4.1 MUTUAL EXCLUSION: only one process at a time can use a resource.
The mutual-exclusion condition must hold for non-sharable resources. For
example, a printer cannot be simultaneously shared by several processes. Sharable
resources, in contrast, do not require mutually exclusive access and thus cannot be
Involved in a deadlock. In general, however, we cannot prevent deadlocks by

denying the mutual-exclusion condition, because some resources are essentially

non-sharable.
Loyd oS o) o)l aladinl 3 e JS Jadd 3aa) g process J (Sax; Jabdall dlagiud)

Lall 48 jLke oS Y ¢ JUal Joe e, 3SR AL e o) gl e G le Jolaiadl slasiad)
A Ll aliall ol sall Qllat Y ¢ My e il e s, processes sie JMA e aaly cdy B
Yoo @l pay ¢ ale JS8, deadlock I b @l o e Y UL Jaliiall g panl) Jsal)
LG e 3 edl (a0 ¢ Jolad) sleilY) bapd by JMA e deadlock J e LiSay

bl IS AS il



6.4.2. Hold and Wait: To ensure that the hold-and-wait condition,
never occurs in the system, we must guarantee that, whenever a
process requests a resource, it does not hold any other resources.

- One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution.

- An alternative protocol allows a process to request resources
only when it has none. A process may request some resources and
use them. Before it can request any additional resources, it must
release all the resources that it is currently allocated.

¢l Gadai () g ¢ alaill 8131 sy Y < Hold and Wait L s of (e sl
A 2 5e (gl Ladiad Y Lgild « e 250 process Il cull LS

g panadiy clhy ol process JS (el adadiul (Say sl g J S5 50 -
il eay 38 Laa ) ge

DA 3 5e gl 0l 05 Y Ledie L o ) gl ik process Ul pews div JsS s -
Adla) 3 g ) @l (e (S o) JB | Leeadiud g 3 )l sall (axs process ) bkl o
M lpauadi 25 Al 3l gell prea o 7l AY) 4o g

L_i\)m\A.AS\ Lf Sdﬁj,d\ aliay) Sc\)é 415 Da



6.4.3.NO PREEMPTION

® The third necessary condition for deadlocks is that there is no preemption of
resources that have already been allocated. To ensure that this condition does
not hold, we can use the following protocol.

® If a process is holding some resources and requests another resource that cannot be
Immediately allocated to it, then all resources currently being held are released.

® The released resources (preempted) are added to the list of resources for which the
process Is waiting.

® The process will be restarted only when it can regain (ss)its old resources, as
well as the new ones that it is requesting.

& A3 gall (adad) (3Lt g Yol a2l Gkl ez Al 5y pall GIEN L LAl
A S s ) Al Wiy ¢ Jaal) 13 ) jeind ade hal, Jadlls Lgasads

¢ sl e L aanads (Sa Y AT 1350 callaig o) sall (e Jadiad process ) cwils 13) -
. process 4 la ylais Al o ) gall 408 ) (Aakasivall) Wiz jaall 3 ) gell csliad -

ALYl ¢ danall o)) s (gla yiul) aladiul e ST Ladie Jasd process - Junds sale) Au-
et 2 assalhi | il



6.4.4. CIRCULAR WAIT: One way to ensure that this condition never holds is to
Impose (u=_9) a total ordering of all resource types and require that each process
requests resources in an increasing order of enumeration
3l sall £ 53l aaand JalS g 5 (a8 o 1) LAl 13 ) paiud axe (e 2SUD (k) sas)
Al )l Yie cal yh 6 o) 3)) e by process JS (e lki g
To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We assign to each
resource type a unique integer number, which allows us to compare two resources and to

determine whether one precedes another in our ordering.

W8 ) Cpani a3 ) sall (e g 53 IS0l sall 8130 Ao gaan 2 R={RI R2, ..., RM} a i ¢ muasill
il 8 AT G Laaaal S 13) Lo paaty (npdeae A5 Hjlia U ey Les ¢ 13y 58 Boaia

We define a one-to-one function - R—N, where N is the set of natural numbers. For example, if
the set of resource types R includes tape drives, disk drives, and printers, then the function F might be

defined as follows:
13) ¢ JEal) Jas ‘_,,J.:: Azl AacY dc gana (R N dus (F R— N ) one-to-one 4l cay y=5 o

108 F A b el g el 81 S jaa g Ak i) S jae Gaali R 3l sall £ 5l de gana cilS
F (tape drive) = 1
F (disk drive) = 5
F (printer) = 12



We can now consider the following protocol to prevent deadlocks: Each process can request
resources only in an increasing order of enumeration. That is, a process can initially request any number
of instances of a resource type —say, A/ After that, the process can request instances of resource type Ry if
and only if ~/(Rj) > F(R/ ). For example, using the function defined previously, a process that wants to use
the tape drive and printer at the same time must first request the tape drive and then request the printer. .

hid 3 ) gal) b process JSI ¢Say : deadlocks ) c¥la sl Ul J S gisp) 8l oY) Wik,
Ri Jis - 2sall g 98 Y (0 230 (5l Giase allai o S process I ol sl dlaadl) (e ) e i 5

F (Rj)> F (Ri) oS 13 Lads 13 R 2,sall & 50 e O process - calkd o oSy ¢ clld aay
b dxdall g dda Y & jaa aladiul a5 ) process ) ¢ Guae sassall dads gl aladiily ¢ JUa)) Jas e
aall (lla 5 Y 5l A i) @ jae bl (o oy gl e

Alternatively, we can require that a process requesting an instance of resource type Af
must have released any resources /7such that ~(Ri ) > F(RJ). Note also that if several instances

of the same resource type are needed, a single request for all of them must be issued.
If these two protocols are used, then the circular-wait condition cannot hold

@l Glhl 8 0 G g Rj 2,5l £ 58 (e e callay 53 process ) of 2ass of Wiy ¢ elld (e Yy
o e GV e ) dalall Al 8 4l Wyl Y | F (Ri) = F (Rj) 058 Gy Ridie 2 50
Lea gl sy calla laa) oy ¢ 25l ¢ 55

circular-wait 3 dad e o oSan D ¢l S6ig 5l (pda aladin) &3 1))



End of Part 2



