Mustansiriayah University
Collage of Education
Computers Science Department
Chapter Six

Deadlock EPE H nTl “
- TSYSTEM
CONCEPTS

Fourth Class

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Dr. Hesham Adnan ALABBASI

2019-2020

6.1.Deadlock

- In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a waiting state.

A2l gell e agme 222 Je processes sae udlili M ¢ Baaatal) dsa) Ay 8

process J ol ¢ gl Gy 83 jigia e) gall CulS 1Y) €) gall —liprocesses
e Al JA

- Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation
Is called a deadlock.

Lliia¥) o leidla Al 3) sall O ¢ Wil s ol et) process JV cfa Y ¢ glall pan 4 -
Deadlock dlall oda aud s Al waiting processes 4avl 5 e

- operating systems typically do not provide deadlock-prevention facilities, and it
remains the responsibility of programmers to ensure that they design deadlock-
free programs.

Al (4 KU e yaall A g3en o Sins ¢« Deadlockd e gt Bale Jaadil) dadail @y .
. Deadlockd! ¢ 4l sl 5

6.1.1. System Model

 System consists of a finite number of resources

* Resource types R1, R2, ..., Rm
CPU cycles, memory space, 1/O devices
» Each resource type Ri has Wi instances.

e A process must request a resource before using it and must

release the resource after using it.
Lealadind amy L) pa o) a5 Lgwladinl Ji8 3) sl process) sy o) sy @

« A process may request as many resources as it requires to carry
out its designated task. The number of resources requested may
not exceed the total number of resources available In the
system.

e Holah ¥ Eusy Ll a0l Aagall 2a8 5) g0 (e 43) ZUsS e processd) ki 4 e
il 2 Aaliadl oyl gall 2ae e 4y glhaall 5) gall

System Model Cont.

® Under the normal mode of operation, a process may utilize a resource in only
the following sequence:

1. Request: The process requests the resource. If the request cannot be granted
Immediately (for example, if the resource is being used by another process), then

the requesting process must wait until it can acquire the resource.

a8 3 gall G ¢ JEA i (Ae) Hgall Je llall mia oSa ¥ S 1Y) 3 54l process Il i e
e Sl s cllally cwld) process ki o) s ¢ (oAl process Jd e alaaiay)
Asadl e peanll

2. Use: The process can operate on the resource (for example, if the resource is

a printer, the process can print on the printer).

process Jl akivia | printer s 3 sall S 13 JES) 3 sall (.uss“i process | ppkii o
. Printer J s2a e dclll)

3. Release: The process releases the resource.

2yl) s process Al e

To illustrate a deadlocked state:

>

>

consider a system with three CD R/W drives. Suppose each of three
processes holds one of these CD R/W drives.

If each process Is now requesting another drive, the three processes will
be in a deadlocked state.

Each is waiting for the event “CD RW is released,” which can be
caused only by one of the other waiting processes. This example
Illustrates a deadlock involving the same resource type.

: Deadlockd Ui zua il @

AW A CD R/ W, Gl S jaa e aal g2y g 4 allaill -
.processes N aa & 5ill 134

S jae aaf cluay 5l axiig GO e process JS ol (= bl -

CDR/W =l

JlOsSiud ¢ Al Gal il & jaa V) (lll process JS il 1) -

.Deadlock 4w & &3 processes

s sy o) (e 5 "CD RW s & Gaaad) iy Lgia S -

Ala JUall 138 a5 .s_A Y1 waiting processes sas) ca
A5l g 5 ol ey Uil Deadlock

>

Deadlocks may also involve different resource types.

For example, consider a system with one printer, and
one DVD drive.

Suppose that process Pi is holding the DVD and process
Pj is holding the printer.

If Pi requests the printer and Pj requests the DVD drive,
a deadlock occurs.

) sall (e ddliss o) 5 Liad Deadlockd! Jads 35 e

A DVD el il & g aal g daglda 4y alail) ¢ JUal) Jas e
s DVD e dhuay 5l 2335 process Pi of o=l
Al ey) a2diy & process Pj

Gany (DVD =l il & yae Pj il g dagllall Pj s 1)
.Deadlock

6.2. Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied
up (1<), preventing other jobs from starting

6.2.1. Necessary Conditions

Deadlock can arise if four conditions hold simultaneously (<) (.).

1. Mutual exclusion: At least one resource must be held in a
non-sharable mode; that is, only one process at a time can
use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has
been released.

¢ e ¢ AS LAl QB e a8 BV e aal g 0 ser Baliia W) Cany sl lagin)
Ay sal process culk 1) 3 sall aladivg ol (a3 e JS 4 Ll s2a) 5 process
A sall ad gy s (Wl process A daali casd ¢ o sl

2. Hold and wait: a process holding at least one resource
and waiting to acquire additional resources held by other
processes

e Jsanl) lais g J8Y) e 13a) 513)50 cluay process) ;e el
s_AY) processes J Ly dluad 4l 5) s

Deadlock Characterization Cont.

3. No preemption: Resources cannot be preempted; that is,
a resource can be released only by the process holding it, after
that process has completed its task.

OMA e) 2y sall L pad (S Y 4l (gl ¢ 2l sall (5 Unial) Ll (S Y 2l aa 0 Y
ginge process 4l e JaSi (jf any ¢ Lo Liias Al process -

4. Circular wait: There exists a set {PO, P1, ..., Pn} of
waiting processes, such that PO is waiting for a resource held
by P1, P1 is waiting for a resource held by P2,, Pn-1is
waiting for a resource held by Pn, and Pn is waiting for a
resource held by PO.

APy, P;, ..., P} waiting processes Jl i de gana S e 2
P, 4 duas)se LLP Pyadua)se Lib Py, Py 4dua) JLiL P,
Py e 900 JEILP,

6.2.2. Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a
system resource-allocation graph consists of:

®m This graph consists of a set of vertices V and a set of edges E.

« The set of vertices V is partitioned into two different types of
nodes:
P = {Py, P, ..., P,}, the set consisting of all the processes in the
system

R = {Ry, R, ..., R,}, the set consisting of all resource types in
the system

- Request edge: A directed edge from process Pi to resource
type Rj is denoted by Pi — Rj; it signifies that process Pi, has
requested an instance of resource type Rj, and is currently
waiting for that resource.

« Assignment edge : edge from resource type Rj to process
Pi is denoted by Rj — Pi; it signifies that an instance of

resource type Rj has been allocated to process Pi

\\e represent each process #J, as a circle ()

N

*\\e represent each resource type Ay as a rectangle. Since resource
type R/ may have more than one instance, we represent each such
Instance as a dot within the rectangle. @

*Note that a request edge points to only the rectangle Ay,
I/F_'i\l h@
(P
Rj
«An assignment edge must also designate one of the dots in the rectangle (instance).

rd "_
| Pi T8
SN EI

R

e \When process AJ, requests an instance of resource type Aj, a request edge is inserted in
the resource-allocation graph. When this request can be fulfilled, the request edge is
Instantaneously transformed to an assignment edge.

e \When the process no longer needs access to the resource, it releases the resource; as a

result, the assignment edge is deleted.

RESOURCE ALLOCATION GRAPH EXAMPLE
The resource-allocation graph shown in the figure 6.1 depicts the following situation

® ThesetsP,R,and E: R, R,
-P={PI, P2, P3) B\ \
-R={RI,R2,R3, R4} /5{ %
-E={PI —RI, P2—R3, Rl - P2, R2— P2, R2— PI,R3 —P3} &K
® Resource instances: \V

- One instance of resource type R ° .

- Two instances of resource type R2 = ;

- One instance of resource type R3 : 4
Figure 6.1

- Three instances of resource type R4

® Process states:

- Process P1 is holding an instance of resource type R2 and is waiting for an instance of resource type
R1.

- Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of R3.

- Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can
be shown that, if the graph contains no cycles, then no
process in the system is deadlocked. If the graph does
contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a
cycle implies that a deadlock has occurred. Each process
involved in the cycle is deadlocked.

If each resource type has several instances, then a cycle

does not necessarily imply that a deadlock has occurred.

-

AN

0
K

\.J"

R>

:3daa e Ky oDk) JSEN e
. Deadlock J1 Al 8 aill & process «llia oS5 olé ¢ cycles e am il (s gis ol 13 -
.Deadlock &t (& 36 ¢ cycles (Ao s sing an) S 1Y)

G) pds cycled) Gl ¢ one instance ol sas) g Al o)) sall (e g 53 JST IS 1Y) -
.Deadlock ! <l cycle JV # &L process JS .Deadlocked

igan by pall A5 Y cycled) Gl « several instances ¥l sae o) sall e g o8 JSI IS 1Y) -

Deadlock

EXAMPLE 1: To illustrate this concept, we return to
the resource-allocation graph depicted in Figure 6.1.

« Suppose that process P3 requests an instance of resource
type R2. Since no resource instance is currently available, a

AN

request edge P3 — R2 is added to the graph (Figure 6.2) \:’ .
A Y o by, R2 25l (e aal 5 23e ksl process P3 A1 o) s A, .
Ailal aid s JA) (PROCESSES (3«) sasa) 3 sall 138 ddaall) oda 8 R,

6.2 Js&ll) 4 LS request edge P3 — R2 Figure 6.1
At this point, two minimal cycles exist in the system: R, R

1- P1 »R1— P2 -R3— P3 »R2— P1 °\ *\

2. P2 - R3— P3 —-R2— P2 X
P P, P

Processes P1, P2, and P3 are Deadlocked. /

e Process P2 is waiting for the resource R3, which is \’ \

held by process P3. = .

e Process P3 is waiting for either process P1 or process Ra
P2 to release resource R2.
e |In addition, process P1 is waiting for process P2 to

release resource R1.

EXAMPLE 2

 Now consider the resource-allocation graph

in Figure 6.3. In this example, we also o

have a cycle: P1 - R1—- P3 -R2—- P1 —
« However, there is no deadlock. Observe

that process P4 may release its instance P

of resource type R2. That resource can

then be allocated to P3, breaking the R,

cycle. N,

ol Sae process P4 1 o) baY Deadlock as s Y Ua *—

S aid P3G s O (See 2 sall 1 g) R2 2 5all) ad
.cycle 4

BASIC FACTS

« If graph contains no cycles = no deadlock.

« If graph contains a cycle =
- if only one instance per resource type, then deadlock.
- if several instances per resource type, possibility of
deadlock

End of Partl

