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Scheduling Levels

- The operating system must select, for scheduling purposes, processes from
these queues in some fashion. The selection process is carried out by the
appropriate scheduler.
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Types of scheduler

1. Long-term scheduler (or job scheduler)
(L.T.S.): I jlas) gy Al processes -l aass

m selects which processes should be brought -ready queue J

into the ready queue . : : :
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® Long-term scheduler is invoked )
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® The long-term scheduler controls the
degree of multiprogramming Ll processes Jlcias S o
B Processes can be described as either: 4 < sll e 4 3l a8 I/0-bound process -

a. 1/O-bound process — spends more time bl e SISO &)

doing I/O than computations. -
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b. CPU-bound process — spends more time
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doing computations.



Scheduling Levels Cont.

2. Short-term scheduler (or CPU scheduler) (S.T.S)
B selects which process should be executed next and allocates CPU .
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m Sometimes the only scheduler in a system.
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m  Short-term scheduler is invoked frequently (milliseconds) = (must be fast).
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m |f all processes are I/O bound the ready queue will almost be empty and the
S.T.S will have little to do.
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m If all processes are CPU-bound the waiting queue will almost be empty
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Scheduling Levels Cont.

3. The Medium-Term Scheduler (M.T.S)

« Some 0O.S such as time-sharing systems may introduce an
additional intermediate level of scheduling.
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®m The key behind the M.T.S is that sometimes it can be advantageous to
remove processes from memory and thus to reduce the degree of
multiprogramming.
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m The process can be swapped out and swapped in later by the M.T.S
swapping may be necessary to improve the process mix.
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Context Switch

A context switch occurs when the CPU switches from one process

to another. K o s '
.Als Process o CPU Jl Qs i context switch oy o

process P, operating system process P,
m Switching the CPU to another interrupt or system call
process requires performing the execut'”gﬂ/'
system to save the state of the ) save state into PCB,
current process and a load the saved : idle

state of the new process via a
reload state from PCB,

context switch. 1

-idle interrupt or system call executing
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Context Switch Cont.

B When a context switch occurs, the kernel saves the context of the old

process in its PCB and loads the saved context of the new process
scheduled to run.
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m Context-switch speed varies from machine to machine, depending on the
memory speed, the number of registers that must be copied, and the

existence of special instructions (such as a single instruction to load or
store all registers).
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Operations on Processes

m O.S that mange processes must be able to perform certain operation on and
with processes.

These include: create, destroy, suspend, resume, change a process
priority, block a process, wake up a process, dispatch a process, enable a
process to communicate with another process.
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® System must provide mechanisms for:

® Process creation

® Process termination



Process Creation

Creating a process involves many operations including: name a process, insert it in the
ready queue, determine the process initial priority, create the PCB and allocate the
process's initial resources.
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A process may create a new process, the creating process is called the parent process
and the created process is called the child process.
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When a process creates a new process two possibilities exist in terms of execution:
a. The parent continues to execute concurrently with its children.
b. The parent waits until some or all of its children have terminated.
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Process Creation Cont.

®m Resource sharing options
® Parent and children share all resources
® Children share subset of parent’ s resources
® Parent and child share no resources
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systemd
pid =1

python
pid = 2808

logind sshd
pid = 8415 pid = 3028

sshd
pid = 3610

tcsh
pid = 4005

bash
pid = 8416

vim
pid = 9204




Process Termination

® A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call.
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« Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:
a. Child has exceeded allocated resources
b. Task assigned to child is no longer required
c. The parent is exiting and the operating systems does not allow a child
to continue if its parent terminates
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Cooperating Processes

® Processes executing within a system may be independent or cooperating
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® Aprocess is independent if it is:

1. Cannot affect or be affected by the other processes executing in the system.

2. Does not share data with any other process. :uilS 1) dl8ius Process Al sS85 o
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® A process is cooperating if it is:
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1. Can affect or be affected by the other KR
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processes executing in the system. A Process sl ge ciliball &l jLis 2

2. Share data with any other process.

® Reasons for cooperating processes:
® Information sharing <l slzall Jals
® Computation speedup <bluall ay s
® Modularity 4xaaill

® Convenience saY!






