Mustansiriayah University
Collage of Education
Computers Science Department

o NVPERATIN
Part 2 s'..sTem
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2019-2020



Scheduling Levels

- The operating system must select, for scheduling purposes, processes from
these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

a1 o Leddy )l queues I e processes Il aall (al ey (Jul dlas sy of s
aliall J ganall J e LAY dilee

Types of scheduler

1. Long-term scheduler (or job scheduler)
(L.T.S.): I jlas) gy Al processes -l aass

m selects which processes should be brought -ready queue J

into the ready queue . : : :
AR ) S pels ) Tis N
® Long-term scheduler is invoked )

infrequently (seconds, minutes) = (may be Lk o 5Sy 28) Gi8A

AT sl Ana i da 0 S LT.S, ) oSaty
® The long-term scheduler controls the
degree of multiprogramming Ll processes Jlcias S o
B Processes can be described as either: 4 < sll e 4 3l a8 I/0-bound process -

a. 1/O-bound process — spends more time bl e SISO &)

doing I/O than computations. -
-l e 3l a8 CPU-bound process -—
b. CPU-bound process — spends more time

bleally aLal) é

doing computations.



Scheduling Levels Cont.

2. Short-term scheduler (or CPU scheduler) (S.T.S)
B selects which process should be executed next and allocates CPU .

Ll CPU ) anadi g ol 22y A2 iy PrOCESS (sl wasi

m Sometimes the only scheduler in a system.
aldaill 8 s o) Jsanall 138 (0585 lal) ams & o

m  Short-term scheduler is invoked frequently (milliseconds) = (must be fast).

go= 055 O @ (milliseconds) LSie JS8 S.T.D) sle il oy o

m |f all processes are I/O bound the ready queue will almost be empty and the
S.T.S will have little to do.

Vsl ¢ )l o Sas ready queue I gl 1/O bound g 55 ¢ 4 processes I JSculS 1y e
cAaldll KIS TS sl sS

m If all processes are CPU-bound the waiting queue will almost be empty

OsSe Waiting queue J gi CPU-bound ¢ 55 ¢ » processes ) JS cuilS 1)
LB



Scheduling Levels Cont.

3. The Medium-Term Scheduler (M.T.S)

« Some 0O.S such as time-sharing systems may introduce an
additional intermediate level of scheduling.

(e ) Jaws sia (5 sie time-sharing Jie Juill 0. Aalail pany pii 8 o
A5l

®m The key behind the M.T.S is that sometimes it can be advantageous to
remove processes from memory and thus to reduce the degree of
multiprogramming.

5_SIA e processes A ) aiall e 0sSs of oS Gl a4l sa MUT.S o)y lisall o
multiprogramming. Jas s s Jull

m The process can be swapped out and swapped in later by the M.T.S
swapping may be necessary to improve the process mix.

M.T.S J& (e 3aY dy 4 Process U swapped out and swapped in Jdee (Sax @
Process J g e (il 45 5 pia (5585 LY



swap in

Scheduling Levels

partially executed

swapped-out processes

swap out

ready queue

(e0)

C

=

» end

/0

/0 waiting
queues




Context Switch

A context switch occurs when the CPU switches from one process

to another. K o s '
.Als Process o CPU Jl Qs i context switch oy o

process P, operating system process P,
m Switching the CPU to another interrupt or system call
process requires performing the execut'”gﬂ/'
system to save the state of the ) save state into PCB,
current process and a load the saved : idle

state of the new process via a
reload state from PCB,

context switch. 1

-idle interrupt or system call executing
aaill dawi bty AT Process ) CPU ) duas o | ~—V
ARl Jieaiy WD Process J) s daas ) save state into PCB,
context switch _:e 52221l Process J! 4da siall : idle

reload state from PCB,

J
executing @¥




Context Switch Cont.

B When a context switch occurs, the kernel saves the context of the old

process in its PCB and loads the saved context of the new process
scheduled to run.

diualiprocess 4l context 3w kernel ) lés, ccontext switch &gas die
A yaaall 3anaaliprocess Al adasisall G context ) dasyy e 4l PCB (4
! L. :..~n

m Context-switch speed varies from machine to machine, depending on the
memory speed, the number of registers that must be copied, and the

existence of special instructions (such as a single instruction to load or
store all registers).

G Al Sl dae 3 S A o e Blde) AT ) Slea e context switch de juw caliss



Operations on Processes

m O.S that mange processes must be able to perform certain operation on and
with processes.

These include: create, destroy, suspend, resume, change a process
priority, block a process, wake up a process, dispatch a process, enable a
process to communicate with another process.

Processes ) ga 5 Ao Limadilae 2 e 3508 0 & of sy Processes sy g3 0.S
.dm\jﬂ\ Sl chqu c.L:\m\ chA c:\:\j]j Pritx calaviu c‘_'é...dd ¢ iedi ‘;L.i;sj; XYY MJ

® System must provide mechanisms for:

® Process creation

® Process termination



Process Creation

Creating a process involves many operations including: name a process, insert it in the
ready queue, determine the process initial priority, create the PCB and allocate the
process's initial resources.

: Gllee 820 G Creating J o
PCB <L) s Process 4 s¥1 4y 4 o¥) masti cready queue 2 Ll , Process ) dvans
Process U4 s¥) 2 ) gall Jaradsy

A process may create a new process, the creating process is called the parent process
and the created process is called the child process.

) Process <l 5l i) il Process ) oassii s é333a Process sliil Process asii s e
.child process < Ledla &5 Sl s parent process —

When a process creates a new process two possibilities exist in terms of execution:
a. The parent continues to execute concurrently with its children.
b. The parent waits until some or all of its children have terminated.

;2] Cua e oYW A 33 Process Wik Process p 588 ladic e
.children g ¢ L 2asil) 3 parent ) i, |
.children JS sl (an sled) s s parent ) ki, o



Process Creation Cont.

®m Resource sharing options
® Parent and children share all resources
® Children share subset of parent’ s resources
® Parent and child share no resources
2 all A8 e 0l LA o
3 sall ;maes Parent and children awl; -1

Parent 2l se (e die yide sena A Children & ik -2
2 )l s ) 2 Parent and child & 2% Y -3

systemd
pid =1

python
pid = 2808

logind sshd
pid = 8415 pid = 3028

sshd
pid = 3610

tcsh
pid = 4005

bash
pid = 8416

vim
pid = 9204




Process Termination

® A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call.

ot e by g, ddaa 2 9a5e e o) Bl AT 25 ole) vie process I S et e
exit () system call plaaiul 483 Joadsl)

« Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:
a. Child has exceeded allocated resources
b. Task assigned to child is no longer required
c. The parent is exiting and the operating systems does not allow a child
to continue if its parent terminates

. abort() system call o233l children processes ! i Parent J) ¢ 28
1l oLl L) sy

daadd) 3l sall te Child D) jstas- |

f skl 223 o) CHild U dieal) dagall, o

parent s a3 13) dxlidl child U zeans ¥ Jeaiil) dakasl 5 parent ) z saq -z



Cooperating Processes

® Processes executing within a system may be independent or cooperating

4 glaia ol Al FLE:.'J\ Jalaziaiddl Processes -l s<iad e
® Aprocess is independent if it is:

1. Cannot affect or be affected by the other processes executing in the system.

2. Does not share data with any other process. :uilS 1) dl8ius Process Al sS85 o
Al 883l 5 ,AY) Processes Ju i o) Sy 1

- R A Process ol ge bl & jlisy 2
® A process is cooperating if it is:

1S 13 & glatia Process ) sS3 e
1. Can affect or be affected by the other KR

saduall 5 ,aY) Processes Jb il o yisi 1
processes executing in the system. A Process sl ge ciliball &l jLis 2

2. Share data with any other process.

® Reasons for cooperating processes:
® Information sharing <l slzall Jals
® Computation speedup <bluall ay s
® Modularity 4xaaill

® Convenience saY!






