Mustansiriayah University
Collage of Education
Computers Science Department

o 'OPERATING
SYSTEM
CONCEPTS

Abraham Silberschatz
Peter Baer Galvin
Greg Gagne

Fourth Class

Dr. Hesham Adnan ALABBASI

2019-2020

2.4 Hardware Protection

® To improve system utilization, the O.S began to share system resources among
several programs simultaneously.

® Multi programming put several programs in memory at the same time.This sharing

created both improved utilization and increased problems.

OS5 alaiina¥) Caen) o o0 128 (ol 085, o gl) (i 3 ,SIAN 8 peal) (e) aal Baasilall Aol
JSUl Bal

® When the system was run without sharing an error in a program could cause
problems for only the one program that was running. With sharing many

processes could be affected by a bug in one program.

o 8 Jadd S Gy () (S el g 8 Ul (la 48 jLid) 4 5 (e Jseilll sl Jaxy Ladic
7l A Uady i) (S processes J) (e wasll | A8 LA aw, Jaill 2 IS 53l sl Ll
...‘\A‘j

2.4.1 Dual Mode Operation

® To ensure proper (&Y sl caulis) operation, we must protect the O.S and all programs
and their data from any malfunctioning (Js) program.

bl 3 I8 5T (e agn alal) il 5 el jall e s 0.5, Aulas i el Juseil) (el

® Protection is needed for any shared resource. The H/W support to differentiating
among various modes of executions. Therefore we need two separate modes of

operation:
Jiad oy Ul gl dlod Calisg ol i) ac i S Craaa H/W J, & yidie JJ}A@:\,}L&@ 024 prlias
Do et) Jaa il
1- User mode

2- Monitor mode (also called kernel mode, system mode, or privileged mode).

® Abit called mode bit is added to H/W to indicate (L+3) the current mode;

= Monitor (0): execution is done on behalf of the 0.S e 4l Ll 5
= User (1): execution is done on behalf of the USER (e &l déiil) 4

This protect the O.S from errant (oxkasll) users and errant users from one another

2.4.2. 1/0O Protection

® To prevent (&) a user from performing illegal I/O:

*We define all I/O instructions to be privileged instructions.

Thus user cannot issue I/O instructions directly, they must do it through the O.S

3 3an Sl 3yl 1/0 < Jlad maen (585 O g
0.S Ja (e ellly ol anle ns Wil 55 pilaa 55 ey | /O Dl oyl] axdinall o€ Y Ul

® For I/O protection to be complete: 1/0: I dlea JaiSs S

*We must be sure that a user program can never gain control of the computer in

monitor mode.

monitor J & dwdalls jhaws e deany o 1l (S Y aniiiall zeali o o) (e guaSlia) 56) can
mode

2.4.3. Memory Protection

® To ensure correct operation: we must protect the interrupt service routines
in the O.S from modification.
Jaill e 0.S. 2 interrupt service routines 4les iy aall Gl Glecal

|- We must protect the interrupt vector from modification by a user program.

2- Also we must protect the interrupt service routines in the O.S from
modification..

® What we need to separate each program's memory space, the ability to determine
the range of legal addresses that the program may access, and to protect the
memory outside that space.

Alan 5 egmali ol L) Jmy a8) (9 sbinl) (3L a5 0800 5 egmali ys JS 3 S0 daline Jumd) gl
Aaliua) dlli 7 a5 SIAlN

Memory Protection Cont.

® This protection can provide by using two registers usually a base and a limit

0
® The base register holds the smallest legal °§;;f;:29
physical memory address 256000
process
® The limit register contains the size of the S 300040
range process o
420940 e
limit
® Example: process
Base register is 300040, 880000
Limit register is 120900 1024000

Then the program can legally access all addresses from 300040 through 420940 (base
+ limit).

Memory Protection Cont.

® The CPU comparing (0% every address generated in user mode with registers

accomplishes this protection

® Any attempt by a program executing in

user mode to access monitor memory or

other user's memory results in a trap to CPU

address "~ yes
—-'.__..\- IH.'\ I.I

the monitor which treats the attempt as a

fatal error

Jsasluser mode (b s el s Jd e A slaa g
i o AY) Cpeddinual) 5813 i WUl dala s I3 Y
CJ\AU:.'; A e Jalay g3l g2l Hlea) trap e

base

-

no

base + limit

PN

-~ < -
"\-.-\. .-_.‘-

no

frap to operating system
monitor—addressing error

® This scheme prevents the user program from modifying the code or data

structures of either the O.S or other users.

Omexiiudl 5l 0.S e IS data structures s\ code J) i (e addivsall zali s alaill 134 aiay

2 A

memory

2.4.4. CPU Protection

® The third piece of the protection is ensuring that the O.S maintains control
3kl e 0.8 dadlay o laca s laall e LN ¢ 3all
® We must prevent a user program from an infinite loop, and never returning

control to the O.S
0.S ekl aa n ¥ 5 infinite loop & Jsaall (e pasieal) zali jy aie Cang

® To achieve this goal we can use a timer, a timer can be set to interrupt the
computer after a specified period. The period may be fixed (1/60 second) or
variable (from | millisecond to | second).

At Al O bpia ol Al 1/60 4G s il () oS3 08 Baana s 5 ey duulall Lxhlid timer o oSa
Bh\j:_\.ﬁt\

® To control the timer: The O.S sets the counter, according to fixed-rate clock.
Every time that the clock ticks the counter is decremented. When the counter
reaches (0) an interrupt occurs, and control transfers automatically to the O.S,
which may treat the interrupt as a fatal error or may give the program more

time.
counter J! sasad s clock J) asyd e IS 4, culd clock Jaxal a8 5 counter (8 23ss 4ad 2y 0.5

8 i =318 Uad Gadaliall Jalas 38 531 <0, () Tilalh oSl Jii iy ¢ interupt) daay (0) I o Laic
A 5l) (e 2 Sl ali) aey

2.5. System Calls

® System calls provide an interface to the services made available by an operating

system
These calls are generally available as:

= Routines written in C and C++,

= Although certain low-level tasks (for example, tasks where hardware must

be accessed directly) may have to be written using assembly-language

instructions

® From the example you can see

® Even simple programs may make heavy

use of the operating system.

® Systems execute thousands of system

calls per second.

source file

B
=

destination file

é Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen
Terminate normally

A

