Lecture Four

Finite Automata (FA)

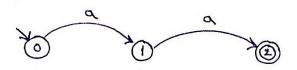
What is Automata?

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting".

An automaton with a finite number of states is called a *Finite Automaton (FA)* or *Finite State Machine (FSM)*.

Finite State Machine (FSM) هي عبارة عن انموذج لجهاز احتسابي بسيط Device Computational تمتلك هذه الاجهزة حجما صغيراً جداً من الذاكرة و يعالج مدخلاته بصورة مباشرة نعنى بهذا أن الجهاز يقرأ رمزاً واحداً خلال وحدة الزمن ويقوم بمعالجته.

- There are two Type of Finite State Machine (FSM):
 - 1- Deterministic Finite Automaton(DFA)
 - 2- Non- deterministic Finite Automaton(NFA)

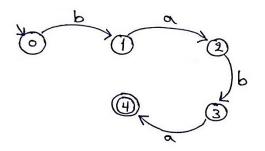

A finite automaton is a collection of three things:

- 1- A finite set of states, one of which is designated as the initial state, called the *start state*, and some of which are designated as *final states*.
- 2- An alphabet \sum of possible input letters, from which are formed strings, that are to be read one letter at a time.
- 3- A finite set of *transitions* that tell for each state and for each letter of the input alphabet which state to go to next.

3- There is one letter input per connection at a time.

Example: Draw Finite Automata (FA) transition diagram and transition table for the following Regular Expressions (RE).

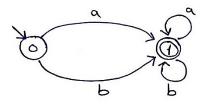
1- aa



Transition diagram

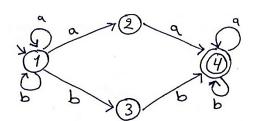
Transition Table

	a
0	{1}
1	{2}
2	


2- baba

Transition Table

	a	b
0		{1}
1	{2}	
2		{3}
3	{4}	
4		


3-
$$(a+b)(a+b)^* \equiv (a+b)^+$$

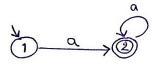
Transition Table

	a	b
0	{1}	{1}
1	{1}	{1}

4-
$$(a + b)$$
* $(aa + bb) (a + b)$ *

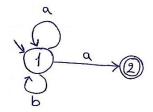
Transition Table

	a	b
1	{1, 2}	{1, 3}
2	{4}	
3		{4}
4	{4}	{4}


5- (a + b)*

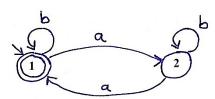
Transition Table

	a	b
S	{S}	{S}


6- aa*

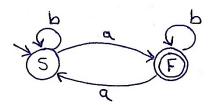
Transition Table

	a
1	{2}
2	{2}


7- (a + b)*a

Transition Table

	a	b
1	{1, 2}	{1, 2}
2		


8- {a is even number}

Transition Table

	a	b
1	{2}	{1}
2	{1}	{2}

9- {a is odd number}

Transition Table

	a	b
S	{F}	{S}
F	{S}	{F}

<u>Homework:</u> Draw Finite Automata (FA) transition diagram for the following Regular Expressions (RE).

- 1- A
- 2- (a + b)*aa (a + b)*
- 3- a(aa)*
- 4- a(a + b)*a
- 5- (a + b)*abb