 Lecture 3 Lecturer: khalida ali ahmed ___

Cascading Style Sheets

1- Introduction

We have said that XHTML is concerned primarily with content rather than the details of how that content is presented by browsers. Most XHTML tags have associated properties that store presentation information for browsers. Browsers use default values for these properties if the document does not specify values. For example, the <h2> tag has the font-size property, for which a browser could have the default value of 18 points. A document could specify that the font-size property for <h2> be set to 20 points, which would override the default value.
 The new value could apply to one occurrence of an <h2> element or all such occurrences in the document; depending on how the property value is set.

2- Levels of Style Sheets

The three levels of style sheets, in order from lowest level to highest level, are inline, document level, and external. Inline style sheets apply to the content of a single XHTML element, document-level style sheets apply to the whole body of a document, and external style sheets can apply to the bodies of any number of documents. Inline style sheets have precedence over document style sheets, which have precedence over external style sheets. For example, if an external style sheet specifies a value for a particular property of a particular tag, that value is used until a different value is specified in either a document style sheet or an inline style sheet.
Likewise, document style sheet property values can be overridden by different property values in an inline style sheet. In effect, the properties of a specific tag are those which result from a merge of all applicable style sheets, with lower-level style sheets having precedence in cases of conflicting specifications. There are other ways style specification conflicts can occur. If no style sheet information is specified, the browser default property values are used. As is the case with tags and tag attributes, a particular browser may not be capable of using the property values specified in a style sheet. For example, if the value of the font-size property of a paragraph is set to 18 points, but the browser can display the particular font being used only in sizes up to 16 points, the browser obviously cannot fulfill the property specification. In this case, the browsers either would substitute an alternative value or would simply ignore the given font-size value and use its default font size.

Inline style specifications appear within the opening tag and apply only to the content of that tag. This fine-grain application of style defeats one of the primary advantages of style sheets—that of imposing a uniform style on the tags of at least one whole document. Another disadvantage of inline style sheets is that they result in style information, which is expressed in a language distinct from XHTML markup, being embedded in various places in documents. It is better to keep style specifications separate from XHTML markup. For this reason, among others, W3C deprecated inline style sheets in XHTML 1.1. Therefore, inline style specifications should be used sparingly.
Document-level style specifications appear in the document head section and apply to the entire body of the document. This is obviously an effective way to impose a uniform style on the presentation of all of the content of a document.

In many cases, it is desirable to have a style sheet apply to more than one document. That is the purpose of external style sheets, which are not part of any of the documents to which they apply. They are stored separately and are referenced in all documents that use them.
External style sheets are written as text files with the MIME type text/css. They can be stored on any computer on the Web. The browser fetches external style sheets just as it fetches documents. The <link> tag is used to specify external style sheets. Within <link>, the rel attribute is used to specify the relationship of the linked-to document to the document in which the link appears. The href attribute of <link> is used to specify the URL of the style sheet document, as in the following example:

The link to an external style sheet must appear in the head of the document. If the external style sheet resides on the Web server computer, only its path address must be given as the value of href. External style sheets can be validated with the service provided at http://jigsaw.w3.org/cssvalidator/.
3- Style Specification Formats
The format of a style specification depends on the level of style sheet. Inline style specifications appear as values of the style attribute of a tag the general form of which is as follows:

Although it is not required, it is recommended that the last property–value pair be followed by a semicolon. Document style specifications appear as the content of a style element within the header of a document, although the format of the specification is quite different from that of inline style sheets. The general form of the content of a style element is as follows:

The type attribute of the <style> tag tells the browser the type of style specification, which is always text/css.
The type of style specification is necessary because there are other kinds of style sheets. For example, JavaScript, which can be embedded in an XHTML document, also provides style sheets that can appear in style elements. Each style rule in a rule list has two parts: a selector, which indicates the tag or tags affected by the rule, and a list of property–value pairs. The list has the same form as the quoted list for inline style sheets, except that it is delimited by braces rather than double quotes. So, the form of a style rule is as follows:

If a property is given more than one value, those values usually are separated with spaces. For some properties, however, multiple values are separated with commas.

Like all other kinds of coding, complicated CSS rule lists should be documented with comments. Of course, XHTML comments cannot be used here, because CSS is not XHTML. Therefore, a different form of comment is needed. CSS comments are introduced with /* and terminated with */ as in the following element:

External style sheets have a form similar to that of document style sheets. The external file consists of a list of style rules.
4 - Selector Forms
The selector can have a variety of forms:
4.1 Simple Selector Forms

The simplest selector form is a single element name, such as h1. In this case, the property values in the rule apply to all occurrences of the named element. The selector could be a list of element names separated by commas, in which case the property values apply to all occurrences of all of the named elements. Consider the following examples, in which the property is font-size and the property value is a number of points:

The first of these selector forms specifies that the text content of all h1 elements must be set in a 24-point font size. The second specifies that the text content of all h2 and h3 elements must be set in a 20-point font size. Selectors can also specify that the style should apply only to elements in certain positions in the document. This is done by listing the element hierarchy in the selector, with only white space separating the element names. For example, the rule form em {font-size: 14pt;} applies its style only to the content of emphasis elements that are nested in a form element in the document. This is a contextual selector (sometimes called a descendant selector).

4.2 Class Selectors

Class selectors are used to allow different occurrences of the same tag to use different style specifications. A style class is defined in a style element by giving the style class a name, which is attached to the tag’s name with a period. For example, if you want two paragraph styles in a document— say normal and warning—you could define these two classes in the content of a <style> tag as follows:

Within the document body, the particular style class that you want is specified with the class attribute of the affected tag—in the preceding example, the paragraph tag. For example, you might have the following markup:
4.3 Generic Selectors
Sometimes it is convenient to have a class of style specifications that applies to the content of more than one kind of tag. This is done by using a generic class, which is defined without a tag name in its name. In place of the tag name, you use the name of the generic class, which must begin with a period, as in the following generic style class:

4.4 id Selectors

An id selector allows the application of a style to one specific element. The general form of an id selector is as follows:

As you would probably guess, the style specified in the id selector applies to the element with the specific id:

.5 Universal Selectors

The universal selector, denoted by an asterisk (*), applies its style to all elements in a document. For example, * {color: red;} makes all elements in the document red. The universal selector is not often useful.

4.6 Pseudo Classes

Pseudo classes are styles that apply when something happens, rather than because the target element simply exists. In this section, we describe and illustrate two pseudo classes: hover and focus. Whereas the names of style classes and generic classes begin with a period, the names of pseudo classes begin with a colon. The style of the hover pseudo class applies when its associated element has the mouse cursor over it. The style of the focus pseudo class applies

when its associated element has focus. The following document is illustrative:
In pseudo.html, the content of an input element (a text box) turns red with a pink background when the mouse cursor is placed over its content.
This happens, however, only when the text box does not have focus. If no text has been typed into the text box, the hover pseudo class has no effect. When the text box acquires focus, the text turns blue with a light blue background and stays like that until the left mouse button is clicked outside the box.

5- Property Value Forms

CSS includes 60 different properties in seven categories: fonts, lists, alignment of text, margins, colors, backgrounds, and borders. As you probably would guess, not all of these properties are discussed here.
The complete details of all properties and property values can be found at the W3C Web site.

Property values can appear in a variety of forms. Keyword property values are used when there are only a few possible values and they are predefined—for example, large, medium, and small. Keyword values are not case sensitive, so Small, SmAlL, and SMALL are all the same as small.
Number values are used when no meaningful units can be attached to a numeric property value. A number value can be either an integer or a sequence of digits with a decimal point and can be preceded by a sign (+ or -).

Length values are specified as number values that are followed immediately by a two-character abbreviation of a unit name. There can be no space between the number and the unit name. The possible unit names are px, for pixels; in, for inches; cm, for centimeters; mm, for millimeters; pt, for points (a point is 1/72 inch); and pc, for picas, which are 12 points. Note that on a display, in, cm, mm, pt, and pc are approximate measures. Their actual values depend on the screen resolution. There are also two relative length values: em, which is the value of the current font size in pixels, and ex, which is the height of the letter, x.

Percentage values are used to provide a measure that is relative to the previously used measure for a property value. Percentage values are numbers that are followed immediately by a percent sign (%). For example, if the font size were set to 75%, it would make the new current size for the font 75 percent of its previous value. Font size would stay at the new value until changed again. Percentage values can be signed. If preceded by a plus sign, the percentage is added to the previous value; if negative, the percentage is subtracted. URL property values use a form that is slightly different from references to URLs in links. The actual URL, which can be either absolute or relative, is placed in parentheses and preceded by url, as in the following property: url(tetons.jpg)
There can be no space between url and the left parenthesis.
Color property values can be specified as color names, as six-digit hexadecimal numbers, or in RGB form. RGB form is just the word rgb followed by a parenthesized list of three numbers that specify the levels of red, green, and blue, respectively. The RGB values can be given either as decimal numbers between 0 and 255 or as percentages. Hexadecimal numbers must be preceded with pound signs (#), as in #43AF00. For example, powder blue could be specified with

CSS also includes properties for counters and strings, but they are not covered here.

Some property values are inherited by elements nested in the element for which the values are specified. For example, the property background-color is not inherited, but font-size is. Using a style sheet to set a value for an inheritable property for the <body> tag effectively sets it as a default property value for the whole document, as in body {font-size: 16pt}

Unless overridden by a style sheet that applies to paragraph elements, every paragraph element in the body of this document would inherit the font size of 16 points.

6- Font Properties

The font properties are among the most commonly used of the style-sheet properties. Virtually all XHTML documents include text, which is often used in a variety of different situations. This creates a need for text in many different fonts, font styles, and sizes. The font properties allow us to specify these different forms.

6.1 Font Families

The font-family property is used to specify a list of font names. The browser uses the first font in the list that it supports. For example, the property:

tells the browser to use Arial if it supports that font. If not, it will use Helvetica if it supports it. If the browser supports neither Arial nor Helvetica, it will use Futura if it can. If the browser does not support any of the specified fonts, it will use an alternative of its choosing.

A generic font can be specified as a font-family value. The possible generic fonts and examples of each are shown in Table 3.1. Each browser has a font defined for each of these generic names. A good approach to specifying fonts is to use a generic font as the last font in the value of a font-family property. For example, because Arial, Helvetica, and Futura are sans-serif fonts, the previous example would be better as follows:
Table 3.1 Generic fonts

	Generic
	Name Examples

	serif
	Times New Roman, Garamond

	sans-serif
	MS Arial, Helvetica

	cursive
	Caflisch Script, Zapf-Chancery

	fantasy
	Critter, Cottonwood

	monospace
	Courier, Prestige

If a font name has more than one word, the whole name should be delimited by single quotes as in the following example:

font-family: ‘Times New Roman’

In practice, the quotes may not be mandatory, but their use is recommended because they may be required in the future.
6.2 Font Sizes

The font-size property does what its name implies. For example, the following property specification sets the font size for text to 10 points:

font-size: 10 pt

Many relative font-size values are defined, including xx-small, x-small, small, medium, large, x-large, and xx-large. In addition, smaller or larger can be specified. Furthermore, the value can be a percentage relative to the current font size.

On the one hand, using the relative font sizes has the disadvantage of failing to provide strict font size control. Different browsers can use different values for them. For example, small might mean 10 points on one browser and 8 points on another. On the other hand, using a specific font size has the risk that some browsers may not support that particular size, causing the document to appear different on different browsers.

6.3 Font Variants

The default value of the font-variant property is normal, which specifies the usual character font. This property can be set to small-caps to specify small capital characters. These characters are all uppercase, but the letters that are normally uppercase are somewhat larger than those that are normally lowercase.

6.4 Font Styles

The font-style property is most commonly used to specify italic, as in font-style: italic

An alternative to italic is oblique, but when displayed, the two are nearly identical, so oblique is not a terribly useful font style. In fact, some browsers do not support it, so they display all oblique fonts in italic.

6.5 Font Weights

The font-weight property is used to specify the degree of boldness, as in font-weight: bold

Besides bold, the values normal (the default), bolder, and lighter can be specified. The bolder and lighter values are taken as relative to the current level of boldness. Specific numbers also can be given in multiples of 100 from 100 to 900, where 400 is the same as normal and 700 is the same as bold.

6.6 Font Shorthands

If more than one font property must be specified, the values can be stated in a list as the value of the font property. The browser then has the responsibility for determining which properties to assign from the forms of the values. For example, the property font:
font: bold 14pt ‘Times New Roman’ Palatino
Specifies that the font weight should be bold, the font size should be 14 points, and either Times New Roman or Palatino font should be used, with precedence given to Times New Roman.
The order in which the property values are given in a font value list is important. The order must be as follows: the font names must be last, the font size must be second to last, and the font style, font variant, and font weight, when they are included, can be in any order but must
precede the font size and font names. Only the font size and the font family are required in the font value list. The document fonts.html illustrates some aspects of style-sheet specification of the font properties in headings and paragraphs:

The following document, called fonts2.html, is a revision of fonts.html that uses an external style sheet in place of the document style sheet used in fonts.html (the external style sheet, styles.css, follows the revised document):

6.7 Text Decoration

The text-decoration property is used to specify some special features of text. The available values are line-through, overline, underline, and none, which is the default. Many browsers implicitly underline links. The none value can be used to avoid this underlining. Note that text-decoration is not inherited. The following document, decoration.html, illustrates the line-through, overline, and underline values:

[image: image1.emf]
The letter-spacing property controls the amount of space between characters in text. The possible values of letter-spacing are any length property values—for example, 3px.
The following are possible categories in which includes the rest of CSS properties; student may follow for further knowledge at his own interest:
7- List Properties.
8- Color.
9- Alignment of Text.
10- The Box Model.
11- Background Images.
12-The and <div> Tags.
Review Questions

1 What is the advantage of document-level style sheets over inline style sheets?

2 What is the purpose of external style sheets?

3 What attributes are required in a link to an external style sheet?

4 What is the format of an inline style sheet?

5 What is the format of a document-level style sheet, and where does the sheet appear?

6 What is the format of an external style sheet?

7 What is the form of comments within the rule list of a document-level style sheet?

8 What is the purpose of a style class selector?

9 What is the purpose of a generic class?

10 Are keyword property values case sensitive or case insensitive?

11 Why is a list of font names given as the value of a font-family property?

12 What are the five generic fonts?

13 In what order must property values appear in the list of a font property?

14 In what ways can text be modified with text-decoration?
<link rel = "stylesheet" type = "text/css" href = "http://www.cs.usc.edu/styles/wbook.css" />

style = " property_1 : value_1 ; property_2 : value_2 ; . . . ; property_n : value_n ;"

<style type = "text/css"> rule_list </style>

selector {property_1:value_1; property_2:value_2; . . .; property_n:value_n;}

<style type = "text/css">

 /* Styles for the initial paragraph */

 ...

 /* Styles for other paragraphs */

 ...

</style>

h1 {font-size: 24pt;}

h2, h3 {font-size: 20pt;}

p. normal {property-value list}

p. warning {property-value list}

<p class = "normal">

A paragraph of text that we want to be presented in 'normal' presentation style

Sebesta4e_Ch03.fm Page 100 Tuesday, June 19, 2007 12:26 PM 3.4 Selector Forms 101

</p>

<p class = "warning"> A paragraph of text that is a warning to the reader, which should be

 presented in an especially noticeable presentation style

</p>

`	

. sale {property-value list}

 Now, in the body of a document, you could have the following:

 <h3 class = "sale"> Weekend Sale </h3>

 ...

<p class = "sale">

...

</p>

#specific-id {property-value list}

#section14 {font-size: 20} specifies a font size of 20 points to the element

<h2 id = “section14”>1.4 Calico Cats </h2>

<? xml version = "1.0" encoding = "utf-8"?>

<! DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN" http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<! -- pseudo.html Illustrates the: hover and: focus pseudo classes -->

 <html xmlns = "http://www.w3.org/1999/xhtml">

<head>

 <title> Pseudo Classes </title>

 <style type = "text/css">

 input: hover {color: red;}

 input: focus {color: green;}

 </style>

</head>

 <body>

 <form action = "">

 <p>

 <label>

 Your name:

 <input type = "text" />

 </label>

 </p>

 </form>

 </body>

 </html>

Fuchsia

or

rgb (255, 0, 255) or #FF00FF

font-family: Arial, Helvetica, Future

<? xml version = "1.0" encoding = "utf-8"?>

 <! DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<! -- fonts.html An example to illustrate font properties -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Font properties

 </title>

 <style type = "text/css">

 p. major {

 font-size: 14pt;

 font-style: italic;

 font-family: 'Times New Roman';

 }

 p. minor {font: 10pt bold 'Courier New';}

 h2 {font-family: 'Times New Roman'; font-size: 24pt; font-weight: bold}

 h3 {font-family: 'Courier New'; font-size: 18pt}

 </style>

 </head>

 <body>

 <p class = "major"> If a job is worth doing, it's worth doing right. </p>

 <p class = "minor"> Two wrongs don't make a right, but they certainly can

 get you in a lot of trouble. </p>

 <h2> Chapter 1 Introduction </h2>

 <h3> 1.1 The Basics of Computer Networks </h3>

 </body>

 </html>

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- fonts2.html An example to test external style sheets -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title>

 External style sheets

 </title>

 <link rel = "stylesheet" type = "text/css" href = "styles.css" />

 </head>

 <body>

 <p class = "major"> If a job is worth doing, it's worth doing right. </p>

 <p class = "minor"> Two wrongs don't make a right, but they certainly can get

 you in a lot of trouble.

 </p>

 <h2> Chapter 1 Introduction </h2>

 <h3> 1.1 The Basics of Computer Networks </h3>

 </body>

 </html>

/* styles.css - an external style sheet

 for use with fonts2.html

 */

 p. major {font-size: 14pt; font-style: italic; font-family: 'Times New Roman'; }

 p. minor {font: 10pt bold 'Courier New';}

 h2 {font-family: 'Times New Roman'; font-size: 24pt; font-weight: bold}

 h3 {font-family: 'Courier New'; font-size: 18pt}

<?xml version = "1.0" encoding = "utf-8"?>

 <!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<! -- decoration.html An example that illustrates several of the possible text decoration values -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Text decoration </title>

 <style type = "text/css">

 p.delete {text-decoration: line-through}

 p.cap {text-decoration: overline}

 p.attention {text-decoration: underline}

 </style>

 </head>

 <body>

 <p class = "delete"> This illustrates line-through </p>

 <p class= "cap"> This illustrates overline </p>

 <p class = "attention"> This illustrates underline </p>

 </body>

</html>

PAGE
14

