Lecture Three

Regular Expression (RE)

Regular Expression is a set of symbols, thus if $alphabet = \{a, b\}$, then aab, a, baba, bbbbb, and baaaaa would all be strings of symbols of alphabet.

In addition, we include an empty string denoted by \wedge which has no symbols in it. We now introduce the use of the Kleene star applied not to a set but directly to the letter x and written as (x*). The simple expression x* will be used to indicate some sequence of x's.

 $x^* = \{ \land, x, x^2, x^3, x^4, ... \} = \{x^n \text{ for } n = 0, 1, 2, 3, 4, ... \}$

Examples:

- 1- $(ab)^* = \{ \land, ab, abab, ababab, ... \}$
- 2- $ab*a = \{aa, aba, abba, abbba, ...\}$
- 3- $a^*b^* = \{A, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, ... \}$
- Notice that **ba** and **aba** are <u>not</u> in this language. Also we should be very careful to observe that $\mathbf{a}^*\mathbf{b}^* \neq (\mathbf{ab})^*$

4-
$$L_1 = {x^{\text{odd}}} = x(xx)^* \underline{\text{or}} (xx)^* x = {x, xxx, xxxxx, ...}$$

5-
$$L_2 = {x^{even}} = xx(xx)^* \underline{or} (xx)^*xx \underline{or} (xx)^* = {\land, xx, xxxx, ...}$$

6- Consider the language L₃ defined over the alphabet ∑ = {a, b, c}, All the words in L₃ begin with an a or c and then are followed by some number of b's. We may write this as:

$$\mathbf{L}_3 = (\mathbf{a} + \mathbf{c})\mathbf{b}^*$$

7- Consider a finite language L_4 that contains all the strings of **a's** and **b's** of length exactly three.

 $L_4 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$

So we may write:

$$L_4 = (a + b)(a + b)(a + b)$$
 or $(a + b)^3$

In general, if we want to refer to the set of all possible strings of **a's** and **b's** of any length, we could write:

$$L_4 = (a + b)^*$$

- 8- Construct RE for all words that begin with the letter **a**: $a(a + b)^*$
- 9- All words that begin with an **a** and end with **b** can be defined by the expression: a(a + b)*b
- 10- The language of all words that have at least two **a's** can be described by the expression:

$$(a + b)^*a(a + b)^*a(a + b)^*$$
 or $b^*ab^*a(a + b)^*$

11- The language of all words that have at least one **a** and at least one **b**:

$$(a+b)*a(a+b)*b(a+b)*$$
 or $bb*aa*$

12- The words of the form some **b's** followed by some **a's**. These exceptions are all defined by the regular expression: $bb^*aa^* \equiv b^+a^+$ *Homework:*

- **1-** Find a regular expression over the alphabet {a, b}:
 - **a.** $L_1 = \{$ All strings that contain exactly three a's $\}$
 - **b.** $L_2 = \{All \text{ strings that end with } ab \}$
 - **c.** $L_3 = \{All \text{ strings in which letter a is even number}\}$
 - **d.** $L_4 = \{ All strings that contain exactly two successive a's. \}$
- 2- Find the output (words) for the following regular expressions:
 - **a.** aa* b
 - **b.** bba*a
 - **c.** $(a + b)^*$ ba
 - **d.** (0+1)* 00 (0+1)*
 - **e.** $(11+0)^* (0+11)^*$
 - **f.** $01^* + (00+101)^*$
 - **g.** $(a+b)^* abb^+$
 - **h.** (((01+10)* 11)* 00)*