Thus the graph of the function g is the straight line passing through the two points (-3,0) and (0,12).

Thus the graph of the function g is the following graph

Exercises:

- 1) Let $f: R \to R$ be the linear function defined by f(x) = 3x 10. Find the x-intercept and the y-intercept of f(x)
- 2) Let $g: R \to R$ be the linear function defined by g(x) = 0.3x + 0.7. Find the x-intercept and the y-intercept of g.
- 3) Let $f: R \to R$ be the linear function defined by f(x) = -4x + 8. Find the x-intercept and the y-intercept of f, then graph the function f.
- 4) Let $g: \mathbb{R} \to \mathbb{R}$ be the linear function defined by g(x) = 5x + 15. Find the x-intercept and the y-intercept of g, then graph the function g.

S2.3: Some well-known Functions and their Graphs

1) A function f(x) = c where c is a fixed number is called a constant function.

Example 2.3.1: The function y = f(x) = 1 is a constant function and its graph is

2) The absolute value function y = f(x) = |x| is defined by the formula

$$y = f(x) = |\underline{x}| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

and its graph is

Remember that $|x| = \sqrt{x^2}$.

3) A function $y = f(x) = x^r$ where r is a real number is called a power function.

Example 2.3.2:

The function $y = f(x) = x^2$ is a power function (which is also a quadratic function) and its graph is

Example 2.3.3: The function $y = f(x) = x^3$ is a power function and its graph is

Example: 2.3.4: The function $y = f(x) = \sqrt{x}$ is a power function and its graph is

(16)

Example: 2.3.5: The function $y = f(x) = \frac{1}{x}$ is a power function and its graph is

4) Let a be a positive real number other than 1. The function $y = f(x) = \underline{a}^x$ is called the exponential function with base a.

Example 2.3.6: Graph the exponential function $y = 2^x$

Answer: To draw the graph of $y=2^x$, we can make use of a table give values for x and find the corresponding values for y

$$x = 0$$
 gives $y = 2^{\circ} = 1$,

$$x=1$$
 gives $y=2^1=2$,

$$x = -1$$
 gives $y = 2^{-1} = \frac{1}{2}$.

Following the process we make the table

ſ	x	-4	-3	-2	-1	0	1	2	3	4
	2 ^x	0.0625	0.125	0.25	0.5	1	2,	4	8	16

Example 2.3.7: The function $y = 5^x$ is an exponential function and its graph is

Answer:

$$x = 0$$
 gives $y = 5^{\circ} = 1$,

$$x = 1$$
 gives $y = 5^1 = 5$,

$$x = -1$$
 gives $y = 5^{-1} = 0.2$

х	-2	- 1	0	1	2
5 ^x	0.04	0.2	1	5	25

Exercise 2.3.8: Graph the exponential function $y = 10^x$.

The properties of exponential function and their graph

- The domain is R (set of real numbers).
- The range is R⁺ (set of positive real numbers).
- The graph is always continuous (no break in the graph).

(18)

Rules of Exponents: If a > 0 and b > 0, the following rules of exponent should be hold for all real numbers x and y:

$$1. \ a^x \times a^y = a^{x+y}$$

$$2. \ \frac{a^x}{a^y} = a^{x-y}$$

3.
$$a^0 = 1$$

$$4. \ \frac{1}{a^x} = a^{-x}$$

5.
$$(a^x)^y = (a^y)^x = a^{xy}$$

$$6. (ab)^x = a^x b^x$$

$$7. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

5) The function $y = e^x$ is called the natural exponential function whose base is $e \cong 2.718281828$, and its graph is

. [r -2		-1	0	1	2	
	e ^x	0.1353	0.3679	1	2.718	7.389	

Remark: Graph of e^x and e^{-x} are reflections of each other.

6) The function $y = \log_b x$ is called the logarithm function with base b where b is a positive number $\neq 1$; and x > 0, and the graph of $y = \log_b x$ where b is greater than 1 is the following graph

