

الجامعة المستنصرية / كلية التربية / قسم علوم الحاسبات 4th Class Computers & Data Security أمنية الحاسوب والبيانات

أستاذ المادة

أم د اخلاص عباس البحراني 8.8 مد بيداء عبد الخالق

Chapter three Mathematics Background

Modular Arithmetic

- several important cryptosystems make use of modular arithmetic. This is when
 the answer to a calculation is always in the range o m where m is the modulus.
- (a mod n) means the remainder when a is divided by n.
- $a \mod n = r$
- a div n=q
- a = qn + r
- r = a q * n

Example:- if a=13 and n=5, find q and r.

q=13 div 5=2 and r=13-2 *5=3 which is equivalent to (13 mod 5)

Example:-find(-13 mod 5).

This can be found by find the number (b) where 5*b >13 then let b=3 and 5*3=15 which is less than 13 so

- **Properties of Congruences.**
 - Two numbers a and b are said to be "congruent modulo n" if (a mod n) = (b mod n) \rightarrow a = b(mod n)
- The difference between a and b will be a multiple of n So **a-b = kn** for some value of k. If and only if one of these three conditions is satisfied:-
 - 1. $a \mod n = b \mod n$
 - 2. n/(a-b) note that no remainder from this division.
 - 3. $a \times k + b = n$ where k is an integer.
- *Example* (1):- $3 \equiv 2 \mod 5$ ____ a=3 b=2 n=5
- 1. a mod n = b mod n 3 mod 5 = 2 mod 5 $3 \neq 2$ (not satisfied)
- 2. n/(a-b) 5/(3-2)5/1 = 5
- 3. $a \times k + b = n$ $3 \times k + 2 = 5$ 3k = 5-2 $3k = 3 \rightarrow k=1$ (must be integer)

- Example (2):- $17 \equiv 2 \mod 5$ ____ a=17 b=2 n=5
- 1. a mod $n = b \mod n$
 - 17 mod 5 = 2 mod 5 2 = 2 (this condition is satisfied)
- 2. n/(a-b)
 5/(17-2)
 5/15 (not satisfied because the result is not integer number)
- 3. $a \times k + b = n$ $17 \times k + 2 = 5$ 17k = 5-2

 $_{17}k = _3 \rightarrow k = _3/_{17}$ (k must be integer, not satisfied because the result is not integer number)

Examples $4 = 9 = 14 = 19 = -1 = -6 \mod 5$, $73 = 4 \pmod{23}$

- Properties of Modular Arithmetic.
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - 3. [($a \mod n$) x ($b \mod n$)] $\mod n = (a \times b) \mod n$ اعداد: أ.م.د. اخلاص البحراني & م.د. بيداء عبد الخالق

Examples

```
11 \mod 8 = 3; 15 \mod 8 = 7
[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2
(11 + 15) \mod 8 = 26 \mod 8 = 2
[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4
(11 - 15) \mod 8 = -4 \mod 8 = 4
[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5
(11 \times 15) \mod 8 = 165 \mod 8 = 5
```

- **Exponentiation** is done by repeated multiplication, as in ordinary arithmetic.
- Example

To find
$$(11^7 \mod 13)$$
 do the followings
 $11^2 = 121 \equiv 4 \pmod{13}$
 $11^4 (11^2)^2 \equiv 4^2 \equiv 3 \pmod{13}$
 $11^7 \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \pmod{13}$

- Greatest Common Divisor(GCD).
- GCD (*Greatest Common Divisor*) of two or more integers, where at least one of them is non zero, is the largest positive integer that divides the numbers without a remainder, for example, the GCD of 8 and 12 is 4. GCD is also known as *Greatest Common Factor* (GCF) or *Highest Common Factor* (HCF).
- 1- Computing GCD using Subtraction method:-
 - وهي أن تقوم بطرح العدد الأصغر من الأكبر لتحصل عل ناتح ثم تطرحه من العدد الأصغر في البداية وتكرر عملية الطرح حتى تجد النتيجة صفر أي عندما يساوي a=b وعندها ذلك هو القاسم المشترك وكما ف المثالالتالي: -
- Abs (252 198) = 54
- Abs (198 54) = 144
- Abs (144 54) = 90
- Abs (90 54) = 36
- Abs (54 36) = 18
- Abs (36 18) = 18
- Abs (18 18) = 0
- \therefore GCD (252,198) = 18

• لحساب القاسم المشترك الاكبر (198,252)

Greatest Common Divisor (GCD).

2- Computing GCD using Euclid's Algorithm method:-

- Let *a* and *b* be two non-zero integers. The greatest common divisor of *a* and *b*, denoted gcd(a,b) is the largest of all common divisors of *a* and *b*.
- When gcd(a,b) = 1, we say that a and b are relatively prime.
- It can be calculated using the following equation: $-GCD(a,b)=GCD(b,a \mod b)$
- Euclid's Algorithm for computing GCD (a, b)
- A=a, B=b
- While B> o
- \bullet R = A mod B
- \bullet A = B
- \bullet B = R
- Return A
- Example :- find the GCD(72,48).

```
GCD(89,25)=GCD(25, 89 mod 25)= GCD(25, 14)
```

$$GCD(2,1)=GCD(1, 2 \mod 1)=GCD(1,0)$$
 so the $GCD(89,25)=1$

• *Example* (1):- Find GCD (123,4567) =1, GCD (27,18)=9

• Least Common Multiple (LCM).

- •The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b.
- The least common multiple of a and b is denoted by LCM(a, b).
- •It can be calculated using the following equation: -

$$LCM(a, b) = |a| * b| / GCD(a, b)$$

• Example :- find the LCM(354,144).

$$GCD(66,12) = GCD(12, 66 \text{ mod } 12) = GCD(12,6)$$

$$GCD(12,6)=GCD(6, 127 \mod 6)=GCD(6,0)=6$$

$$LCM(354,143)=(354*144)/6=8496$$

Modular Arithmetic

- several important cryptosystems make use of modular arithmetic. This is when
 the answer to a calculation is always in the range o m where m is the modulus.
- (a mod n) means the remainder when a is divided by n.
- $a \mod n = r$
- a div n=q
- a = qn + r
- r = a q * n

Example:- if a=13 and n=5, find q and r.

q=13 div 5=2 and r=13-2 *5=3 which is equivalent to (13 mod 5)

Example:-find(-13 mod 5).

This can be found by find the number (b) where 5*b >13 then let b=3 and 5*3=15 which is less than 13 so

-13 mod 5=5*3-13=2

- Example: Find the multiplicative inverse of 11 in Z₂₆.
- The GCD(26,11)must be 1 in order to find the inverse. Bu using the extended Euclidean algorithm, we can use this table

q	r_{1}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 –2	5
1	4	3	1	-2 5	— 7
3	3	1	0	5 -7	26
	1	0		-7 26	

- the inverse of 11 is –7 mod 26=19.
- Or we can find the inverse based on using the equation n=qn+r

- Example: Find the multiplicative inverse of 11 in Z₂₆.
- 26=11*2+4
- 11=4*2+3
- 4=3*1+1
- 3=3*1+0
- We are now in reverse compensation starting from one as shown
- 1=4-(3*1)
- 1=4-(11-(4*2))
- 1=<u>4</u>-11+<u>4</u>*2
- 1=3*4-11
- 1=3*(26-11*2)-11
- 1=3*26-6*11-11= 3*26<u>-7*11.so</u> the multiplicative inverse of 11 is -7

- Example :- Find the multiplicative inverse of 23 in Z_{100} .
- 100=23*4+8
- 23=8*2+7
- 8=7*1+1
- 7=1*7+0
- Now in revers way
- =8-(7*1)
- =8-(23-8*2)
- 1=8-23+8*₂
- = 1 = 3*8 23
- 1=3*(100-23*4)-23=3*100-12*23-23=3*100-13*23 So the multiplicative inverse of 23 in Z_{100} is -23 or 87(-23 mod 100).