Signed numbers:

There are three ways in which signed binary numbers may be expressed:

- Signed magnitude (SM)
- One's complement and
- Two's complement.

In an 8-bit word, signed magnitude representation places the absolute value of the number in the 7 bits to the right of the sign bit.

Ex: in 8-bit signed magnitude(SM), positive 3 is: 00000011

Negative 3 is: 10000011

Ex: in 8-bit **one's complement**, positive 3 is: 00000011

Negative 3 is: 11111100

Ex: Adding 1 gives us -3 in **two's complement** form: 11111101

$$= + (64 + 0 + 16 + 8 + 0 + 0 + 1)$$

$$= (+89)_{10}$$

$$= -(0+0+16+8+4+0+0)$$

$$= (-28)_{10}$$

7's and 8's complements in octal:

$$7's = 7 - each digit$$

$$8's = 7's + 1$$

EX: Perform 7526₈ - 3142₈ using 8's comp.:

1 4364 the result

<u>H.W.</u> Perform the following using 8's complement:

$$545_8 - 14_8 =$$

15's and 16's complements in hexadecimal:

 \it{EX} : Find 15's and 16's comp. of (1 F A D)₁₆

EX: Perform ABED-1FAD using 16's comp. :

<u>H.W.</u>: Perform the following using 16's complement:

$$F E E D_{16} - D A F 3_{16} =$$

ANS: 23FA₁₆

$$98AE_{16}-1FEE_{16}=$$