
2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

1

EXPRESSION

(infix to postfix\prefix conversion)

Another application of stack is calculation of postfix expression. There

are basically three types of notation for an expression (mathematical

expression; An expression is defined as the number of operands or data

items combined with several operators.)

1. Infix notation

2. Prefix notation

3. Postfix notation

Infix to postfix conversion algorithm

The prefix and postfix notations are not really as awkward to use as

they might look. For example, a C++ function to return the sum of two

variables A and B (passed as argument) is called or invoked by the

instruction:

 add(A, B)

Note that the operator add (name of the function) precedes the

operands A and B. Because the postfix notation is most suitable for a

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

2

computer to calculate any expression, and is the universally accepted

notation for designing Arithmetic and Logical Unit (ALU) of the CPU

(processor). Therefore it is necessary to study the postfix notation.

Moreover the postfix notation is the way computer looks towards

arithmetic expression, any expression entered into the computer is first

converted into postfix notation, stored in stack and then calculated.

Human beings are quite used to work with mathematical expressions

in infix notation, which is rather complex.

Using infix notation, one cannot tell the order in which operators

should be applied. Whenever an infix expression consists of more than

one operator, the precedence rules (BODMAS) should be applied to

decide which operator (and operand associated with that operator) is

evaluated first.

But in a postfix expression operands appear before the operator, so

there is no need for operator precedence and other rules.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

3

The rules to be remembered during infix to postfix conversion

are:

1. Parenthesize the expression starting from left to light.

2. During parenthesizing the expression, the operands associated

with operator having higher precedence are first parenthesized.

For example in the above expression B * C is parenthesized first

before A + B.

3. The sub-expression (part of expression), which has been

converted into postfix, is to be treated as single operand.

4. Once the expression is converted to postfix form, remove the

parenthesis.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

4

Algorithm

1. Push “(” onto stack, and add“)” to the end .

2. Scan from left to right and repeat Steps 3 to 6 for each element until

the stack is empty.

3. If an operand is encountered, add it to Q.

4. If a left parenthesis is encountered, push it onto stack.

5. If an operator is encountered, then:

(a) Repeatedly pop from stack, if not its precedence higher

precedence than .

(b) Add to stack.

6. If a right parenthesis is encountered, then:

(a) Repeatedly pop from stack until a left parenthesis is

encountered.

(b) Remove the left parenthesis.

7. Exit.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

5

For, example consider the following arithmetic Infix to Postfix

expression

(A+(B*C-(D/E^F)*G)*H)

ch STACK Output (postfix)

 #

(#(

A #(A

+ #(+ A

(#(+(A

B #(+(AB

* #(+(* AB

C #(+(* ABC

- #(+(- ABC*

(#(+(-(ABC*D

D #(+(-(ABC*D

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

6

ch STACK Output(postfix)

/ #(+(-(/ ABC*D

E #(+(-(/ ABC*DE

^ #(+(-(/^ ABC*DE

F #(+(-(/^ ABC*DEF

) #(+(- ABC*DEF^/

* #(+(-* ABC*DEF^/

G #(+(-* ABC*DEF^/G

) #(+ ABC*DEF^/G*

* #(+* ABC*DEF^/G*-

H #(+(* ABC*DEF^/G*-H

) # ABC*DEF^/G*-H*+

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

7

CONVERTING INFIXTO PRETFIX EXPRESSION

The rules to be remembered during infix to postfix conversion are:

1. Reading Expression from “right to left” character by

character.

2. We have Input, Prefix_Stack & Stack.

3. Now converting this expression to Prefix.

For, example consider the following arithmetic Infix to Pretfix

expression

((A+B) * (C+D) / (E-F)) + G

Input Prefix_Stack Stack

G G Empty

+ G +

) G +)

) G +))

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

8

F G F +))

- G F +)) -

E G F E +)) -

(G F E - +)

/ G F E - +) /

) G F E - +) /)

D G F E – D +) /)

+ G F E – D +) /) +

C G F E – D C +) /) +

(G F E – D C + +) /

* G F E – D C + +) / *

) G F E – D C + +) / *)

B G F E – D C + B +) / *)

+ G F E – D C + B +) / *) +

A G F E – D C + B A +) / *) +

(G F E – D C + B A + +) / *

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood infix to postfix\prefix conversion

9

 ((A+B) * (C+D) / (E-F)) + G

- Now pop-out Prefix_Stack to output (or simply reverse).

Prefix expression is

+ / * + A B + C D – E F G

Note:

The priority of operations is :

1. () is higher priority

2. ^

3. \ *

4. + - is lower priority

(G F E – D C + B A + * / +

Empty G F E – D C + B A + * / + Empty

