
2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

1

Data Structure

 Introduction

In the modern world, Data and its information is an essential part, and

various implementations are being made to store in different ways. Data

are just a collection of facts and figures, or you can say data are values

or a set of values that are in a particular format. A data item refers to a

single set of values. Data items are then further categorized into sub-

items which are the group of items which are not being called a plain

elementary form of items.

What is Data Structure?

In computer terms, a data structure is a Specific way to store and

organize data in a computer's memory so that these data can be used

efficiently later. Data may be arranged in many different ways such as

the logical or mathematical model for a particular organization of data is

termed as a data structure. The variety of a specific data model depends

on the two factors: -

• Firstly, it must be loaded enough in structure to reflect the actual

relationships of the data with the real-world object.

• Secondly, the formation should be simple enough so that anyone

can efficiently process the data each time it is necessary.

Data structure mainly specifies the following four things:

1. Organization of data.

2. Accessing methods.

3. Degree of associativity.

4. Processing alternatives for information.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

2

Categories of Data Structure

The data structure can be subdivided into major types:

1. Linear Data Structure: A data structure is said to be linear if its

elements combine to form any specific order. There are two

techniques of representing such linear structure within memory.

 The common examples of the linear data structure are:

• The first way is to provide the linear relationships among all the

elements represented using linear memory location. These linear

structures are termed as arrays.

• The second technique is to provide a linear relationship among all

the elements represented by using the concept of pointers or links.

These linear structures are termed as linked lists.

2. Nonlinear Data Structure:

This structure is mostly used for representing data that contains a

hierarchical relationship among various elements.

Examples of Non-Linear Data Structures are listed below:

Tree: In this case, data often contain a hierarchical relationship among

various elements. The data structure that reflects this relationship is

termed as a rooted tree graph or a tree.

Graph: In this case, data sometimes hold a relationship between the

pairs of elements which is not necessarily following the hierarchical

structure. Such a data structure is termed as a Graph.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

3

Data structure study covers the following points:

1. Amount of memory require to store.

2. Amount of time require to process.

3. Representation of data in memory.

4. Operation performed on the data.

How to choose the suitable data structure:

For each set of, data there are different methods to organize these data

in a particular data structure. To choose the suitable data structure, we

must use the following criteria.

1- Data size and the required memory.

2- The dynamic nature of the data.

3- The required time to obtain any data element from the data

structure.

4- The programming approach and the algorithm that will be used to

manipulate these.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

4

Algorithm : an algorithm states explicitly how data will be manipulated.

Algorithm +data structure =program.

Difference between algorithm and program:

 Algorithm program

1. Semantic 1. Syntax

2. Human language 2. Machine language

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

5

Arrays

1. One dimensional array (vector)

 An array consists of a set of objects (called its elements), all of which are

of the same type and are arranged contiguously in memory.

 In general, only the array itself has a symbolic name, not its elements.

Each element is identified by an index which denotes the position of the

element in the array. The number of elements in an array is called its

dimension. The dimension of an array is fixed and predetermined; it

cannot be changed during program execution. Arrays are suitable for

representing composite data which consist of many similar, individual

items.

Examples include: a list of names, a table of world cities and their current

temperatures, or the monthly transactions for a bank account. An array

variable is defined by specifying its dimension and the type of its

elements.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

6

For example, an array representing 10 height measurements (each being

an integer quantity) may be defined as:

int heights[10];

The individual elements of the array are accessed by indexing the array.

The first array element always has the index 0. Therefore, heights[0] and

heights[9] denote, respectively, the first and last element of heights.

Each of heights elements can be treated as an integer variable. So, for

example, to set the third element to 177, we may write:

heights[2] = 177;

Attempting to access a nonexistent array element (e.g., heights[-1] or

heights[10]) leads to a serious runtime error (called ‘index out of bounds’

error).

Processing of an array usually involves a loop which goes through the

array element by element.

 The following example illustrates using a function which takes an array

of integers and returns the average of its elements.

const int size = 3;

double Average (int nums[size])

{

 double average = 0;

for (i = 0; i < size; ++i)

average += nums[i];

return average/size;

 }

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

7

Array Initialization

An array may have an initializer. Braces are used to specify a list of

comma separated initial values for array elements.

For example,

 int nums[3] = {5, 10, 15}; initializes the three elements of nums to 5, 10,

and 15, respectively.

When the number of values in the initializer is less than the number of

elements, the remaining elements are initialized to zero:

int nums[3] = {5, 10};

When a complete initializer is used, the array dimension becomes

redundant, because the number of elements is implicit in the initializer.

The first definition of nums can therefore be equivalently written as:

 int nums[] = {5, 10, 15}; // no dimension needed

example: write c++ program to find average:

1 #include <iostream.h>

2 main ()

3 {

4 int stud[10] ,total=0 , i ;

5 float Avrege;

6 cout << "Please Enter all grades of stud:\n" ;

7 for (i=0 ; i<10 ; i++)

8 {

9 cout << "grade number" << i+1 << endl;

10 cin >> stud[i] ;

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

8

11 total=total+stud[i] ;

12 }

13 Avrege=total /10;

14 cout << "The Avrege of all student is: " << Avrege ;

15 return 0;

16 }

2. Two dimensional Arrays (matrix)

 An array may have more than one dimension (i.e., two, three, or higher).

The organization of the array in memory is still the same (a contiguous

sequence of elements), but the programmer’s perceived organization of

the elements is different,

 for Example

int seasonTemp[3][4];

The organization of this array in memory is as 12 consecutive integer

elements. The programmer, however, can imagine it as three rows of

four integer entries each.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

9

Multidimensional Arrays Initialization

The array may be initialized using a nested initializer:

int seasonTemp[3][4] = { {26, 34, 22, 17}, {24, 32, 19, 13}, {28, 38, 25,

10} };

 Because this is mapped to a one-dimensional array of 12 elements in

memory, it is equivalent to:

int seasonTemp[3][4] = {26, 34, 22, 17, 24, 32, 19, 13, 28, 38, 25, 10};

Multidimensional Arrays Processing

 Processing a multidimensional array is similar to a one-dimensional

array, but uses nested loops instead of a single loop.

Example 1

const int rows = 3;

const int columns = 4;

int seasonTemp[rows][columns] = { {26, 34, 22, 17}, {24, 32, 19, 13}, {28,

38, 25, 10} };

 int HighestTemp (int temp[rows][columns])

{

 int highest = 0;

for (i = 0; i < rows; ++i)

 for (j = 0; j < columns; ++j)

if (temp[i][j] > highest) highest = temp[i][j];

return highest;

 }

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

10

Pointers and References

 A pointer is simply the address of a variable in memory. Generally,

variables can be accessed in two ways: directly by their symbolic name,

or indirectly through a pointer. The act of getting to a variable via a

pointer to it, is called dereferencing the pointer. Pointer variables are

defined to point to variables of a specific type so that when the pointer

is dereferencing, a typed variable is obtained.

• Pointers are useful for creating dynamic variables during program

execution.

• Unlike normal (global and local) variables which are allocated storage

on the runtime stack, a dynamic variable is allocated memory from a

different storage area called the heap.

• Dynamic variables do not obey the normal scope rules. Their scope is

explicitly controlled by the programmer.

• A pointer variable is defined to ‘point to’ data of a specific type. For

example:

int *ptr1; // pointer to an int

char *ptr2; // pointer to a char

• The value of a pointer variable is the address to which it points. For

example, given the definitions

 int num; • we can write:

 ptr1 = #

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

11

• The symbol & is the address operator; it takes a variable as argument

and returns the memory address of that variable. The effect of the above

assignment is that the address of num is assigned to ptr1. Therefore, we

say that ptr1 points to num.

Pointer Values • Given that ptr1 points to num, the expression

 *ptr1

• Dereferences ptr1 to get to what it points to, and is therefore

equivalent to num. The symbol * is the dereference operator; it takes a

pointer as argument and returns the contents of the location to which it

points.

• In general, the type of a pointer must match the type of the data it is

set to point to.

• Regardless of its type, a pointer may be assigned the value 0 (called the

null pointer). The null pointer is used for initializing pointers, and for

marking the end of pointer-based data structures (e.g., linked lists).

Pointer Arithmetic

 In C++ one can add an integer quantity to or subtract an integer quantity

from a pointer. This is frequently used by programmers and is called

pointer arithmetic. Pointer arithmetic is not the same as integer

arithmetic, because the outcome depends on the size of the object

pointed to. For example, suppose that an int is represented by 4 bytes.

Now, given

char *str = "HELLO";

int nums[] = {10, 20, 30, 40};

int *ptr = &nums[0]; // pointer to first element

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

12

str++ advances str by one char (i.e., one byte) so that it points to the

second character of "HELLO", whereas ptr++ advances ptr by one int (i.e.,

four bytes) of that it points to the second element of nums.

2nd stage 2019-2020 Data Structure
Lecturer :Amaal K.Dawood Introduction

13

