
Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

31

Figure 3.5 Addition of medium-term scheduling to the queueing diagram.

3.8 Context Switch

• Switching the CPU to another process requires performing saving the state of the

current process and a loading the saved state of the new process. This task

known as a context switch.

• Context-switch time is pure overhead because the system does no useful work

while switching.

• The more complex the O.S the more work must be done during a context switch.

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

32

Figure 3.6 Diagram showing CPU switches from process to process.

3.9 Operations on Processes

• O.S that mange processes must be able to perform certain operation on and with

processes. These include: create, destroy, suspend, resume, change a process priority,

block a process, wake up a process dispatch a process, enable a process to

communicate with another process.

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

33

• Creating a process involves many operations including: name a process, insert it in the

ready queue, determine the process initial priority, create the PCB and allocate the

process's initial resources.

• A process may create a new process. If it does the creating process is called the parent

process and the created process is called the child process.

When a process creates a new process two possibilities exist in terms of execution:

a. The parent continues to execute concurrently with its children.

b. The parent waits until some or all of its children have terminated.

• A process terminates when it finishes executing its last statement and asks the

O.S to delete it by using the exist system call.

• A parent may terminate the execution of one of its children for a variety at

reasons such as:

a. The child has exceeded its usage of some of the resources it has been allocated.

b. The task assigned to the child is no longer required.

c. The parent is finished and the O.S does not allow a child to continue if its parent

terminated.

3.10. Cooperating processes

The concurrent processes executing in the O.S may be either independent processes

or cooperating processes.

A process is independent if it cannot affect or be not affected by the other processes

executing in the system. Any process that does not share any data (temporary or persistent)

with any other process is independent.

 A process is cooperating if it can affect or be affected by the other processes

executing in the system or any process that share data with other processes is a cooperating

process.

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

34

There are several reasons for providing an environment that allows process

cooperation:

1. Information sharing.

2. Computation speedup.

3. Modularity: Dividing the system functions into separate processes.

4. Convenience, Many tasks to work on at one time, a user may be editing, printing

and compiling in parallel.

To illustrate the concept of cooperating processes let us consider the producer-

consumer problem as an example of cooperating processes. A produce process produces

information that is consumed by a consumer process. For example a print program

produces characters that are consumed by the printer driver. To allow producer and

consumer to run concurrently we must have a buffer of item that can be filled by the

producer and emptied by the consumer. A producer can produce one item while the

consumer is consuming another item. The producer and consumer must be synchronized.

The consumer must wait until an item is produced (the buffer is empty) and the producer

must wait if the buffer is full.

In the bounded-buffer and be one solution for the producer and consumer processes

share the following variables:

var n;

type item =;

var buffer: array [0 .. n-l] of item;

in out: 0 .. n-1

With in, out initialized to the value 0. The shared buffer is implemented as a circular

array with two logical pointers: in and out.

in points to the next free position in the buffer; out points to the first full position in

the buffer.

The buffer is empty when in=out; the buffer is full when in+1 mod n=out.

The producer process has a local variable nextp in which the new item to be produced

is stored.

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

35

Repeat

……

produce an item in nextp

……

while in+1 mod n=out do no-op;

buffer [in] :=nextp;

in:=in+l mod n;

until false;

The consumer process has a local variable nextc in which the item to be consumed is

stored;

repeat do-nothing instruction

while in=out do no-op;

nextc:= buffer [out],

out:=out+1 mod n;

……

consume the item in nextc; until false;

3.11. Thread structure

A thread sometimes called light weight process (LWP) is a basic unit of CPU

utilization and consists of a program counter, a register set, and a stack space. It shares with

peer threads its code section, data section and O.S resources such as open files and signals

collectively known as a task. A traditional or heavy weight process is equal to a task with

one thread.

Threads can be in one of several states ready, blocked, running, or terminated. Threads can

create child threads if one thread is blocked another thread can run. Unlike processes

threads are not independent of one another, because all threads can access in the task.

3.12. Interrupt Processing

An interrupt is an event that alters the sequence in which a processor executes

instructions. The H/W of C/S generates the interrupt. When an interrupt occurs the

following actions will be taken:

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

36

a. The O.S gains control.

b. The O.S saves the state of interrupted process in its PCB.

c. The O.S analyzes the interrupt and passes control to the appropriate routine to handle the

interrupt.

d. The interrupt handler routine processes the interrupt.(IHR)

e. The state of the interrupted process (or some other next process) is restored.

f. The interrupted process (or some other next process) executes.

An interrupt may be specifically initiated by a running process (in which case it is

often called a trap and said to be synchronous with the operation of the process). Or it may

be caused by some event that may or may not be related to the running process. It is said to

be asynchronous with the operation of the process.

3.13. Interrupt Classes (types)

There are five interrupt classes. These are:

1. SVC (Supervisor call) interrupts

A running process that executes the SVC instruction such as initiates these:

- I/O request. - Obtaining more storage. - Communicating with user operator.

2. I/O interrupts

There are initiated by the I/O H/W. such as:

- An I/O operation completes.

- An I/O error occurs.

- When a device is made ready.

3. External interrupts:

These are caused by various events including: the expiration of a quantum on an

interrupting clock.

Mustansiriayah University / College of Education / Computer Science Department

Operating System Concepts Fourth Stage 2019-2020 Chapter Two

Prepared By: Dr. Hesham Adnan ALABBASI

37

- Pressing of the console's interrupt key by the operator.

- Receipt of a signal from another processor.

4. Restart interrupts:

These occur when the operator:

- Presses the console's restart bottom.

- When a restart signal processor instruction arrives from another processor on a multi-

processor system.

5. Program checks interrupt:

These are caused by many problems such as:

- Divide by zero.

- Arithmetic overflow.

- Data is in the wrong format.

- Attempt to execute invalid operation code.

- Attempt to reference a memory location beyond the limits of main memory.

- Attempt to execute a privileged instruction.

- Attempt to reference a protected resource.

