CHAPTER 2
NORMED SPACES.
BANACH SPACES

Particularly useful and important metric spaces are obtained if we take
a vector space and define on it a metric by means of a norm. The
resulting space is called a normed space. If it is a complete metric
space, it is called a Banach space. The theory of normed. spaces, in
particular Banach spaces, and the theory of linear operators defined on
them are the most highly developed parts of functional analysis. The
present chapter is devoted to the basic ideas of those theories.

Important concepts, brief orientation about main content

A nbfmed space (cf. 2.2-1) is a vector space (cf. 2.1-1) with a
metric déﬁn.ed by a norm (cf. 2.2-1); the latter generalizes the length of
a vector in the plane or in three-dimensional space. A Banach space
(cf. 2.2-1) is a normed space which is a complete metric space. A
normed space has a completion which is a Banach space (cf. 2.3-2). I
a normed space we can also define and use infinite series (¢f. Sec. 2.3).

A mapping from a normed space X into a normed’ space Y is
called an operator. A mapping from X into the scalar field R or C is
called a functional. Of particular importance are so-called boinded
linear operators (cf. 2.7-1) and bounded linear functionals (cf. 2.8-2)
since they are continuous and take advantage of the vector space
structure. In fact, Theorem 2.7-9 states that a linear operator is
continuous if and only if it is bounded. This is a fundamental result.
And vector spaces are of importance here mainly because of the linear
operators and functionals they carry. :

It is basic that the set of all bounded linear operators from a given
normed space X into a given normed space Y can be made into a
normed space (cf. 2.10-1), which is denoted by B(X, Y). Similarly, the
set ‘of all bounded linear functionals on X becomes a normed space,
which is called the dual space X' of X (cf. 2.10-3). _

In analysis, infinite dimensional normed spaces are more impor-
tant than finite dimensional ones. The latter are simpler (cf. Secs. 2.4,

2.5), and operators on -them can be represented by matrices (cf. Sec.
2.9).
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Remark on notation , :
We denote spaces by X ‘and 'Y, operators by capital

L

‘_-Iet.téfs

" (preferably T), the image of an x under T by Tx (without paren- -

‘theses), functionals by lowercase letters (preferably f) and the value of f

at an x by f(x) (with parentheses). This is a widely ‘used practice. -

2.1 Vector Space

Vector spaces play a role in many branches_qf mathematics and its
applications. In fact, in various practical (and theoretical) problems we
have a set X whose elements may be vectors in three-dimensional
space, or sequences of numbers, or functions, and these elements can
be added and multiplied by constants (numbers) in a natural way, the
result being again an element of X. Such corcrete situations suggest
‘the concept of a vector space as defined below. The definition will
involve a general field K, but in functional analysis, K will be R or C.
The elements of K are called scalars; hence in our case .they will be
real or complex numbers. ' )

s

2.1-1 Definition (Yector space). A vector space (or linear space) over |

a field K is a nonempty set X of elements x, y,- - - (called vectors)
together with two algebraic operations. These operations are called

vector addition and multiplication of vectors by scalars, that is, by
elements of K.

Vector addition associates with every ordeiéd pair (x, y) of vectors
a vector x +y, called the sum of x and y, in such a way that the following

properties hold. Vector addition is commutative and associative, that
is, for all vectors we have -

xX+ty=y+x

x+(y+z)=(x+y)+z;

furthermore, there exists a vector 0, called the zero vector, and for
every vector x there exists a vector —x, such that for all vectors we

' Readers familiar with groups will notice that we can summarize the defining
properties of vector addition by saying that X is an additive abelian group.
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have
x+0=x

x+(—x)=0.‘_'

Multiplication by scalars associates with ¢very vector x and scalar
a a vector ax (also written xa), called the product of « and X, in such a
way that for all vectors x, y and scalars a, B we have

. | a(Bxi; (eB)x

I1x=x
and the distributive laws

a(x-ll-y)=ax+_a}-1
(a+B)x =ax+Bx. ‘ ~ |

From the definition we see that vector addition is a mapping
XX X—X, whereas multiplication by scalars is a. mapping
KxX—X. | | : |

K is called the scalar field (or coefficient field) of the vector space
X, and X is called a real vector space if K =R (the field of real
numbers), and a complex vector space if K =C (the field of complex

| numbers?).

The use of 0 for the scalar 0 as well as for the zero vector should

. §f cause no confusion, in general. If desirable for clarity, we can denote
i the zero vector by 4. o '

The reader may prove that for all vectors and scalars,

:flf (1a) Ox=6

(1b) e af =0
[and
% (2) (—1)x =—x.

*Remember that R and C also denote the real line and the complex plane,
respectively (cf. 1.1-2 and 1.1-5), but we need not use other letters here since there is
fllittle danger of confusion.
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- The next examples are of a similar nature because in each of them we

space with the algebraic operations defined as usual in connection with & -
“ sequences, that is, 1

5‘.2 ) _ | Normed Spaces. Banach Spaces

Examples -

2.1-2 Spacé R". This is the Euclidean space introduced in 1.1- 5 the
underlymg set being the set of all n-tuples of real numbers, written
x=(, -, &), y= (m1,* - -, M), etc., and we now see that this is a real
vector space with the two algebraic operations defined in the usual
fashion

; x+y=(§1+n-1,'-'°,§.+nn)

ax=(ag, -, a&) - (a'eR)'.

shall recognize a previously defined space as a vector space.

2.1-3 Space C". This- space was defined in 1.1-5. It consists of i}
all ordered n-tuples of complex numbers x= (1, -, &), f

y=(M1,"**, M), etc., and is a complex vector space with the ?
algebralc operations defined as in the previous example, where now zg
aecC.

-

2.1-4 Space Cla, b]. ThlS space was defined in .1.1-7. Each point of 5
this space is a continuous real-valued function on [a, b]. The set of all 4

these functions forms a real vector space with the algebraic operations S
defined in the usual way: : _ ]

(x+y)O)=%x(D+y(t)

= At s .
'47' e AT SR

2ass . il (ax)(D=ax() . (aeR).

An fact x+ y and ax are continuous real-valued functions deﬁned on §
[a, bl if x and y are such functions and « ‘is real. :
Other important vector spaces of functions are (a) the vector b
space B(A) in 1.2-2, (b) the vector space of all differentiable functions’ e
on R, and (c) the vector.space of all real- valued functions on [a, b] 7
which are integrable in some sense.

2.1-5 Space I>. This space was introduced in 1.2-3. It is a vector

(‘fl, &2, - ')+("_’7h M2, " ')=(§1+7h,§2+ N2, °) r

a(éy, &, )= (aéy, afy, - - ). ‘

e

O

L e R
{
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. (3)- - a1x1+a2x§+---+a,x,=0
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In fact, x = (&) € I” and y = (n;) € I implies x +y € I, as follows readily
from the Minkowski inequality (12) in Sec. 1.2; also axe 2.

Other vector spaces whose points are sequenbes are [”in 1.1-6, I? in
1.2-3, where 1=p<-+, and s in 1.2-1. N

A subspace of a vector space X is a nonempty subset Y of X such
that for all y1, y2€ Y and all scalars «, B we have ay, + 8y, e Y. Hence
Y is itself a vector space, the two algebraic operations being those
induced from X. ‘ R )

" A special subspace of X is the improper subspace Y = X, Every

- other subspace of X (#{0}) is called proper.

Another special subspace of any vector space X is Y ={0}.
A linear combination of vectors x,,-- -, x,, of a vector space X is
an expression of the form

ax;Fapxst o FaX,

where the coefficients «;, - - * , &y are any scalars. A :
For any nonempty subset M < X the set of all linear combinations
of vectors of M is called the span of M, written '

spah M.

Obviously, this is a subspace Y of X, and we say that Y is spanned or
generated by M. ' : -

We shall now introduce two important related concepts which will
be used over and over again.

2.1-6 Definition (Linear independence, linear dependence). Linear
independence and dependence of a given set M of vectors X1, X,
(rz1) in a vector space X are defined by means of the equation

?

where a;,---, @ aré scalars. Clearly, equation (3) holds for
M=z =" =q =0.If this is the only r-tuple of scalars for which (3)
holds, the set M is said to be linear'y independent. M is said to be lin-
early dependent if M is not linearly independent, that is, if (3) also holds
for some r-tuple of scalars, not all zero.

An arbitrary subset M of X is said to be linearly independent it
every nonempty finite subset of M is linearly independent. M is said to
be linearly dependent if M is not linearly independent. |
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A motivation for this terminology results from the fact that if §i
M={xy,---,x} is linearly dependent, at lcast one vector of M can
be written as ‘a liriear combination of the others; for instance, if (3)

holds with an &, 0, then M js linearly dependent and we may solve
(3) for'x, to get ' : ' :

Xr =Paxi+---+B,_1x_, (Bi=—ajfa,). &

We can use the concepts of linear depcndenqe and independence f&.
to define the dimension of a vector space, starting as ‘follows:*

is finite dimensional and dim X =0. If X is not

In analysis, infinite dimensional vector spaces are of greater inter-
est than finite dimensional ones. For instance, Cla, b] and I are
infinite dimensional, whereas R” and C" are n-dimensional.

If dim X =n, a linearly independent n-tuple of vectors of X is
called a basis for X (or a basis in X). If {es,- - -, e,} is a basis for X,

every x € X has a unique Tepresentation.as a linear combination of the
basis vectors: N

X=aoaye;+ - - *t+age,.

For instance, a basis for R" is | ﬁ
. . l-
e;=(1,0,0, 0), :
622(0, 1’ 09 90), .
e’l = (O’ 0) 0, ? 1)
This is sometimes called the canonical basis for R". -
More geneérally, if X is any Vector space, not necessarily finite ;‘H} !
dimensional, and B is a linearly independent subset of X which spans {2 e
%ﬂ -J
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X, then B is called a basis (or Hamel basis) for X, Hence if B is a basis
for. X' ‘then every nonzero x € X has a unique representation as a linear
co! tion of (finitely many!) elements of B with nonzero scalars as

coeﬂic:ents

Every vector space X # {0} has a basis.

In the finite dimensional case this is clear. For arbitrary infinite
dimensional vector spaces an existence proof will be given by the use
of Zom s lemma. This lemma involves several ooncepts whose expla-
fiation” would také us some time and, since at present a’ number of
other things are more important to us, we do not pause but postpone
that existence proof to Sec. 4.1, where we must mtroduce Zorrn’s
lemma for another purpose. . .

We mention that all bases for a given (finite or infinite’ dimen-
sional) vector space X have the same cardinal number. (A proof would
_ 'reqmre somewhat more advanced tools from set theory; cf. M. M. Day
(1973), p. 3.) This number is called the dlmensmn of X Note that this
includes and extends Def. 2.1-7.

Later we shall need the followin"g 'simple

2 1-8 Theorem (Dimension of a subspace). Let X be an n-
dimensional vector space. Then any proper subspacé Y of X has dimen-
sion less than n.

Proof If n=0, then X= {0} and has no proper subspace. If
dim Y=0, then Y={0}, and X#Y implies dim X =1. Clearly,
dim Y=dim X=n. If dim Y were n, then Y would have a basis of n
elements, which would also be a basis for X since dim X =n, so that
X =Y. This shows that any linearly independent set of vectors in Y
must have fewer than n elements, and dim Y<n. §

Prbblems

1. Show that the set of all real numbers, with the usual addition and
multiplication, constitutes a one-dimensional real vector space, and the
set of all complex numbers constltutes a one-dimensional comple\x
vector space.

2. Prove (1) and-(2).
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3. Describe the span ‘of M= {(1,1;1),(0,0,2)} in |R>.

4. Which of the' following subsets of R® constityte a subspace of R>?
[Here, x =(¢,, &, 8).] - '
(a) All x-with &i=& and £, =0, i
) -Al x with & =g+1. -
(c) All x with positive &, &, &. '
(d) All x with £~ £+ & =k = const. :

S. Show that {x,, --,x,}, where x;() =1, is a linearly independent set
in the space Cfa, b]. : : i

6. Show that in an n-dimensional vector space X, the representation of
any x as a linear combination of given basis| vectors €1,°° ", e, i
unique. ’

7.. Let{e;,---,e.} be a basis for a complex vector space X. Find a basis
for: X regarded as a real vector space. What is t

he dimension of X in &1
either-case? '

8. If M is a linearly dependent set in a complex vector space.X, is M &
" linearly dependent in X, regarded as a eal vector space?

9. On a fixed interval [a, b]=R, consider the set X consisting ‘of all
polynomials with real coefficients and of degree hot exceeding a given @
n, and the polynomial x =0 (for which a degree|is not defined in the
usual discussion of degree). Show that X, with the usual addition and
the usual multiplipation by real numbers, is a |real vector space. of -
dimension 7+1. Find a basis for X. Show at we can obtain a §
complex vector space X in a similar fashion if wtq let those coefficients 3§ -
be complex. Is X a subspace. of- X? ok

10. If Y and Z are subspaces of a vector space X, %how that YNZ is a
subspace of X, but YU Z need not be one. Give examples.

1. If M #@ is any subset of .2 vector space X, sho;w that span M is a
subspace of X ' '

12. Show that the set of all real two-rowed square matrices forms a veclt:f)r :

Space X. What is the zero vector in X ?»'Detenhiﬁei‘dim X. Find a basis

for X. Give examples of subspaces of X. Do the |[symmetric matrices
b x € X form a subspace? The singular matrices? | '

13. (Pro@uct) Show that the Cartesian product X = jP(X2 of two vector
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spaces over the same field becomes a vector space if we define the tw
algebraic operations by : o
(1, %2)+ (v, y2) =(x1+y1, X2+ y,),
a(x,, Xp)= (ax,, ax,).

14. (Quotient space, codimension) Let Y be a subspace of a vector
space X. T}.le coset of an element x € X with respect to Y is denoted b
x+Y and is defined to be the set (see Fig. 12) g

Cx+Y={v|v=x+y, ye.Y}
Show that the distinct cosets form a partition of X, Show that under
algebraic operations defined by (see Figs.-13, 14)
wWH+Y)+(x+ Y)=(w+x)+Y
a(x+Y)=ax+Y

fhesel cosets constitute the elements of a vector space. This spac.e

- .is called the quotientlspacel (or sometimes factor space) of X by Y
(or .modu.lo Y) gnd is denoted by X/Y. Its dimension is cal'led- the
codimension of Y and is denoted by codim Y, that is

codlm Y =dim (X/Y).

15. Let X=R’and Y={£,0,0)| £, eR}. Find X/Y, X/ X, X/{0}.

fw+Y)+ (x+Y)=(w+x)+ Y

xlf_ ;2 glustranon of the notation  Fig. 13. Illustration of vector-addition in a
in Prob. 14 quotient space (cf. Prob. 14)
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2(x +Y)=2c + Y

x+Y

lix+y)=lx+y
2 2

Fig. 14. Tllustration of multiplication by scalars in a quotient space (cf. Prob. 14) |

2.2 Normed Space. Banach Space

- . The examples in the last section illustrate that in many cases a vector

space X may at the same time be a metric space because a metric d is '_

- defined on X. However, if there is no relation between the algebraic ]
sstructure and the metric, we cannot expect a useful and applicable 3
theory that combines algebraic and metric concepts. To guarantee such |
a relation between ‘“‘algebraic” and “‘geometric” properties of X we
define on X a metric d in a special way as follows. We first introduce } (
an auxiliary concept, the norm -(definition below), which uses the . I
algebraic operations of vector space. Then we employ the norm to
obtain a metric d'that is of the desired kind. This idea leads to the |, l
concept of a normed space. It turns out that normed spaces are special
enough to provide a basis for a rich and interesting theory, but general .
enough to include many concrete models of practical importance. In  { |
fact, a large number of metric spaces in analysis can be regarded as
normed spaces, so that a normed space is probably the most important
kind of space in functional analysis, at least from the viewpoint of
present-day applications. Here are the definitions:

| IS

: 1|
2.2-1 Definition (Nornied space, Banach space). A normed space® X J
is a vector space with a norm defined on it. A Banach space is a

o

| ESU—

3 Also called a normed vector space or normed linear space. The définition was given
(independently) by S. Banach (1922), H. Hahn (1922) and N. Wiener (1922). The theory
developed rapidly, as can be seen from the treatise by S. Banach (1932) published only
ten years later. ' '

e
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coniplete normed space (complete in the metric defined by the norm;

see (1):below). Here a Hormi on a (real or complex) vectar space Xisa

real-valued function on X whose value at an x e X is denoted by
il ' ~ (read “norm of x”)

and which has the properties

(N1) T K=o

(N2) Ix|=0 " &= x=0

(N3) el = el 1l |

(N4) . Ix + YI=lxll+Iyl  (Tviangle inequality);

here x and y are arbifraiy véctors in X and « is any scalar.
A norm on X defines @ metric d on X which is given by

-

(1) d(x, y)=|x—yl | (x, ye X)
and is called the metric induced by the norm. The normed space just
defined is denoted by (X, |- ) or simply by X. 8 0 o
. The defining properties (N1)-to (N4) of a ‘morm are suggested
and motivated by the length |x| of a vector x in elementary vector

~algebra, so that in this case we can write [jx]|=|x|. In fact, (N1) and

(N2) state that all vectors have positive lengths except the zero vector
which has length zero. (N3) means that when a vector is multiplied by
a scalar, its length is multiplied by the absolute value of the scalar.
(N4} is illustrated in Fig. 15. It means that the length of one side of a

triangle cannot exceed the sum of the lengths of the two other sides.

It is not difficult to conclude from (N1) to (N4) that (1) does define
a metric. Hence normed spaces and Banach spaces are metric spaces.

wx*Y

Iyl

x 1l

Fig, 15. Illustration of the triangle inequality (N4)
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i Banach spaqes"are important becausethey enjoy certain proper-
_ ties (to be discussed in- Chap 4) ‘which are not shared by incomplete
v normed spaces. ) ' '
For later use we notice that (N4) implies
2) 3 vl =lell=ly-x), - o
_ as the reader may readily prove (cf. Prob. 3). Formula (2) implies an
important property of the norm:
- The norm i continuous, that is, x —s lxll is a continuous mapping
of X|I-I) into R. (Cf. 1.3-3) -
Prototypes of normed Spaces are the familiar spaces of all vectors
in the plane and in three dhnengiqna;_ space. Further examples result &
from Secs. 1.1 and 1.2 since s me of the metric spaces in those sections
can be madé into normed spaces in a natural way. However, we shall
see later in this section that not every metric on a vector Space can be  §
obtained from a norm. i
Examples g
2.2-2 Euclidean space R" and unitary space C~. These spaces were
defined in 1.1-5. They are Banach spaces with norm defined by
I . | | ¢
12|12 2 ' 2
® b= ( X, 167" <&+ 7gF
’ j=1 . ] I
" In fact, R” and C" are complete (cf. 1.5-1), and (3) yields the mietric
(7) in Seéc. 1.1: ' ' S
d(x, y)=|x _y” = \/|§1 —ml*+ e +]& —n.
We note in particular that in R® we have MJ
4§
llxll = |x| = §° &+ &2, :%‘ -J
This confirms our previous remark that the norm - generalizes the 8 |
elementary notion of the length x| of .a vector. 7
il .
f ]
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2.2-3 Space I°. ' This space was defined i m 1.2-3. It isa Banach space
with norm given by '

had 1/p
@ | sl % tar)

In fact, this norm induces the metric in 1.2-3:

' e 1/p
d(x,y)=|lx—y||= (Zl = nﬂg) ,
- . 8 R .
Completeness was shéwn in 1.5-4.

2.2-4 Space I”. This space was defined in 1.1-6 and is' a Banach
space since its metric is obtained from the norm defined by

x| = sup ||

and completenéss was shown in 1.5-2.

2.2-5 Space C[a, b). This space was defined in 1.1-7 and is a Banach
space w1th norm given by :

) = maxx(o)

where J =[a, b]. Completeness was shown in 1.5-5.

2.2-6 Incomplete normed spaces. From the incomplete metric spaces
in 1.5-7, 1.5-8 and 1.5-9 we may readily obtain incomplete normed

spaces. For instance, the metric in 1.5-9 is induced. by the norm
defined by '

N\

n
(6) = [ xcolae
0

3
2w

Can every incomplete normed space be completed? As a metric space
certainly by 1.6-2. But what about extending the operations of a vector
space and the norm to the completion? We shall see in the next section
that the extension is indeed possxble
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~2.2-7 An incomplete normed space and its completion L[ a, b). The

vector spacé of all continuous real-valued functions on [q, b] forms a
normed space X with norm. defined by '

™ - ( J i X7 df)%.

This space is not complete. For instance; if [a, b]=[0, 1], the sequence
in 1.5-9 is also Cauchy in the present space X; this is almost obvious
from Fig. 10, Sec. 1.5, and results: formally by integration because for
n>m we obtain '

' 1 2

™~ _ (n—m) 1 1
n m2= Xnll)— mil 3 = < = -
Ito =5 || G0 -5at0F a <3

This Cauchy sequence does not éonverge. The proof is the same as in
1.5-9, with the metric in 1.5-9 replaced by the present metric. For a

general interval [a, 5] we can construct a similar Cauchy sequence

which does not converge in X. :
The space X can be completed by Theorem 1.6-2. The completion

1s denoted by Lz[a, b]. This is a Banach space. In fact, the norm on X - .

and the operations of vector space can be extended to the completion
of X, as we shall see from Theorem 2.3-2 in the next section.
More generally, for any fixed real number p =1, the Banach space

L%[a, b]

is the completion of the normed space which consists of all continuous

real-valued functions on [a, b], as before, and the norm defined by

® - b= ([ o )

'The subscript p is supposed to remind us that this norm depends on-
the choice of p, which is kept fixed. Note that for p =2 this equals (7).
For readers familiar with the Lebesgu§ integral we want to men-
tion that the space LP[aq, b] can also be obtained in a direct way by the
use of the Lebesgue integral and Lebesgue measurable functions x on
[a, b] such that the Lebesgue integral of |x|” over [a, b] exists and is

finite. The elements of LP’[a, b] are equivalence classes of those

functions, where x is equivalent to y if the Lebesgue integral of |x — y|*

DA
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over [a, b} is: zero [Note that thxs guarantees the vahdlty of axiom
(N2).] -
R’e' ders w1thout that background should not be disturbed. In fact,
- is not essential to the later development. At any rate, the
example ﬂ]ustrates that completion may lead to a new kind of elements
and one>may have to find out what their nature is.

2.2-8 Space s. Can every metric on a vector space be obtained from
a norm? The answer is no. A counterexample is the space s in 1.2-1.
In fact, s is a vector:space, but its metric d defined by

. v 1 |§—m
dxXy)= ), 50— .
G y) igl 2' 14§ — ]

cannot be obtained from a norm. This may immediately be seen from
the following lemma which states two basic properties of a metric d
obtained from a norm. The first property, as expressed by (9a), i
called the translation invariance of d.

2.2-9 Lemma (Translation mvanance) A metric d induced by a norm
on a normed space X satisfies

(a) d(x +a, y+a)=d(x,y)
(b) d(ax, ay) = la) d(x, y)

(9)

for all x, y, ae€ X and every scalar a.

Proof. We have

dix+a,y+a)=|x+a—(y+a)=[llx—yll=d(x, y)
and

d(ax, ay) =llox —ayl|= el |x -yl =|a] d(x, y). 2

Problems

1. Show that the norm ||x|| of x is thé distance from x to 0.

2. Verify that the usual length of a vector in the plane or in three
diménsional space has the properties (N1) to (N4) of a norm.
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10. (Unit sphere) The sphere |
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3. Prove (2).

4. Show that we may replace (N2) by -

=0 = = x=0

without altering the concept of a norm. Show that nonnegativity of a
norm also follows from (N3) and (N4).

5 Show that (3) defines a norm.

6. Let X be the vector space of all ordered ﬁziirs xé(gl, &),

Y =11, m2), * - - of real numbers. Show that norms on X are defined by
IIXlll . Ifll+l'§2|
Il =62+ £
Il = max {15, l&,]).

7. Verify that (4) satisfies (N1) to (N4).

8. There are several norms of practical-importance on the vector space of

ordered n-tuples of numbers (cf. 2.2-2), notably those defined by
'"x”izl‘fll"‘lle"" i '+l§n' _ _
Ixle =&l +lel + - 4Py (1< pcoo)
Ixll=max {lg,], - - -, |&,]2.

In each case, verify that (N1) to (N4) are sati_sﬁed;

9. Verify that (5) defines a norm.

SO; D={xex|lx=1}

in a normed space X is called the unit Sphere. Show that for the norms
in Prob. 6 and for the norm defined by ”

"x”4 T (gl“ + &4 )

the unit spheres look as shown in Fig. 16.
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~lI*1l =

-]

ixll = 1
~llxIL, = 1

Fig. 16. Unit sphetes in Prob. 10
11. (Convex set, segment)-A subset A of a vector spacé X is said to be
convex if x,ye A implies ‘
M={zeX]|z =ax+(l-a)y, 0=a=1}cA.

M is called a closed segment with boundary points x and y; any other
z€ M is called an interior point of M. Show that the closed unit ball

BO; D={xeX|lx|=1}

in a normed space X is convex.

(a) Convex (b) th convex

Fig. 17. Ilustrative examples of convex and nonconvex sets (cf. Prob. 11)



12. Using Prob. 11, show that

! S .

e(x)= &+ V]&)?

does not define a norm on the vector’ space of all ordered pairs
x =(&, &), - - - of real numbers. Sketch the curve @(x)=1 and com-
pare it with Fig. 18. -

Fig.' 18. Curve ¢(x)=1'in Prob. 12

13. Show that the discrete metric on a vector space X#{0} cannot be
obtained from a norm. (Cf. 1.1-8.)

14. If d is a metric on a vector space X# {0} which is obtained from a
norm, and d is defined by

d(x, x)=0, E(x, y)=d(x, _y) +1 (x#y),

show that d cannot be obtained from a norm.

15. (Bounded set) Show that a subset M in a normed space X is bounded

if and only if there is a positive number ¢ such that |x||=c for every

x € M. (For the definition, see-Prob. 6 in Sec. 1.2.)
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2.3 Further Properties of Normed Spaces

By definition, a subspace Y. of a normed space X is a subspace of X
considered as a vector space, with the norm obtained by restricting the
norm on X to the subset Y. This norm on Y is said to be induced by
the norm on X. If Y is closed in X, then Y is called a closed subspace
of XBy definition, a subspace Y of a Banach space X is a subspace of
X considered as a normed space. Hence we do not require Y to be
complete. (Some writers do, so be careful when comparing books.)
In this connection, Theorem 1.4-7 is useful since it yields im-
mediately the following .

2.3-1 Theorem (Subspace of a' Banach space). A subspace Y of a
Banach space X is complete if and only if the set Y is closed in X.

Convergence of sequences and related concepts in normed spaces
follow readily from the corresponding definitions 1.4-1 and 1.4-3 for ;
metric spaces and the fact that now d(x; y)=|lx —y|: :

i) A sequéiicc (x:) in a normed Space X is convergent if X
contains an x such that

lim |lx, — x| =0.

Then we write x, —> x and call x the limit of (x,).

(ii) A sequence (x,) in a normed épace X is Cauchy if for every
€ >0 there is an N such that ~

(1) |2 — xa]l< & " forallm,n>N. .

; Sequences were available to us even in a general metric space. In

4 normed space we may go an important step further and use series as
1 follows. '

Infinite series can now be defined in a way similar to that in
4 calculus. In fact, if (x) is a sequence in a normed space X, we can
associate with (x;) the sequence (s,) of partial sums

Sn =‘x]+x2+‘ e +x,,'
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‘where n=1,2,--- . If (s,) is convergent, say,

; (a,.) such that

Sp —> S, that is, s, — sl|— O,

then the infinite series or, briefly, series

(2)

s
o=
=

=x1+Xp+ -
I

is sald to converge oOr to be convergent, s is called the sum of the serles
and we write o

5= Z Xp =X1+xXp+ -
k=1 4

convergent. However; we warn the reader that in a normed space X,. ';:,.
absolute convergence implies convergence if and only if X is complcte
(cf. Probs. 7 to 9).

“The concept of convergence of a series can be used ‘to ‘define a #
“basis” as follows. If a normed space X contains a sequence (e,) with 3

® (et rael—0 sn s |

then (e,) is 'cal_led a Schauder basis (or basis) for X. The series i
Z Oy €y :
k=1

which has the sum x is then called the expansion of x with respect to
(en) and we write

= o e

K
X = Z Q) Cy.
k=1

For example, I” in 2.2-3 has a Schauder basis, namely (e, ), where
e, =(8,;), that is, e, is the sequence whose nth term is 1 and all other
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terms are zero; thus

€]=(1,0,0,0,"')

(4) e2=(03 1’ 0, 09 "o ')

e3=(0,0,1,0,---)
etc. _ '

If 2 normed space X has a Schauder basis, then X is separable (cf.
Def. 1.3-5). The proof is simple, so that we can leave it to the reader
(Prob. 10). Conversely, does every separable ‘Banach space have a
Schauder basis? This is a famous question raised by Banach himself
about forty years ago. Almeost all known separable Banach spaces had
been shown to possess a Schauder basis. Nevertheless, the surprising
answer to the question is no. It was given only Quite recently, by P.
Enflo (1973) who was able to construct a separable Banach space
which has no Schauder basis. ' '

Let us ﬁna]ly' turn to the problem of completing a no'rqu space,
which was briefly mentioaed in the last section. ' ' '

2.3-2 Theorem (Completion). Let X=(X,||-I) be a normed space.
Then there is a Bahach space X and an isometry A from X onto a
subspace W of X which is dense in X. The space X is unique, except for
isometries.

Proof. Theorem 1.6-2 implies the existence of a complete metric
space X =(X, d) and an isometry A: X —— W= A(X), where W is
dense in X and X is unique, except for isometries. (We write A, not T
as in 1.6-2, to free the letter T for later applications of the theorem in
Sec. 8.2) Consequently, to prove the present theorem, we must make
X into a vector space and then introduce on X a suitable norm.

To define on X the two algebraic operations of a- vector space, we
consider any %, §eX and any representatives (xn)€x and (y,)e .
Remember that £ and y are equivalence classes of Cauchy sequences
in X. We set z, = X, +yn. Then (z,) is Cauchy in X since

“Zn - Zm” = ”xn -+ ¥n .—(xm + ym)”s‘”xﬁ —X;ﬁ”_"”)’n - yrn”°

We define the sum3s = £ +3 of £ and j to be the equivalence class for

. Which (z,)is a representative; thus (z,)e 2. This definition is independ-

%nt of the particular choice of Cauchy sequgncé's belonging to £ and
V. In fact, (1) in Sec. 1.6 shows: that if (x:)~(x,") and ( Ya) ~(y."), then
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. (%, +ya) ~(x."+y,") because

% Yo — (" y M| = 1 = a1+l = yll

Similarly we define the product af e X of a scalar « and £ to be the
equivalence class for which (ax,) is a representative. Again, this §
definition is mdependent of the particular choice of a representative of 3§
£. The zero element of X is the equivalence class containing all Cauchy
sequences which converge to zero. It is not. difficult to see that those
two algebraic operations have all the properties required by the |
definition, so that X is a vector space. From the deﬁmtxon it follows %
that on W the operations of vector space induced from X agree w1th

those induced from X by means of A. -

Furthermore, A induces on W a norm | -||;, whose value at every
y = Ax e W is ||§ll, =|lx||. The corresponding metric on W is the restric-
tion of d to W since A is isometric. We can extend the norm |||}, to X -
by setting ||£].= d (0, £) for every % € X. In fact, it is obvious that -l @
satisfies-(N1) and .(N2) in Sec. 2.2, and the other two ax10ms (N3) and

(N4) follow from those for |||, by a limit process. §

Problems

1. Show that ¢ =17 is a vector subspace of I” (cf. 1.5-3) and so is ¢y, the

space of all sequences of scalars converging to zero.

+ 2. Show that ¢, in Prob lisa closed subspace of 17, so that ¢ is complete

by152andl47

3. In I", let Y be the subset of all sequences with only finitely many
nonzero terms. Show that Y is a subspace of [” but not a closed

subspace.

4. (Continuity of vector space operations) Show that in a normed space
X, vector addition and multiplication by scalars are continuous opera- §

tions with respect to the norm; that is, the mappings defined by
(x, y) > x +y and (a, x) > ax are contmuous

5. Show that X, — x and y, ——> y implies x, +y, — x +y. Show that
a, — « and x, —> x implies a,Xx, —> ax.

6. Show that the closure Y of a subspace Y of a normed space X is again

a vector subspace.

i
i
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7. (Absolute cdnvergénce) Show t'hat_conver'gence of lyJ+ |yl +lysll+ - - -
may not imply convergence of y,+y,+y;+ - Hint. Consider Y in
Prob 3 and (yn) where y, = (9{"), n{’ = 1/n?, n"" =0 for all j# n.

: the 8. If in a normed space X, absolute convergénce of any series alwéys
this § implies convergence of that series, show that X is-complete.
e of § e - o
achy | 9. Show that in a Banach space, an absolutely convergent series is
hose & convergent.
the 10. (Scllauder basis) Show that if a normed space has a Schauder basis, it
llo.ws is separable. .
‘'with # ‘ |
- '._ 11. Show that (e,), where e,.=(8,,,-),‘is a Schauder basis for 7, where
very 1=p<+om.
stric-
to X 4 12. (Seminorm) A seminorm on a vector space- X is a mapping
e -0 p: X—>R satisfying (N1), (N3), (N4) in Sec. 2.2. (Some authors
) ané call this a pseudonorm.) Show that :
r } - p(0)=0,
: lp(y) = p(x)| = p(y — ).
i ‘ .
the 4 (Hence if p(x)=0 implies x =0, then p is a norm.)
[ 3] )

. 13. Stiow that in Prob. 12, the elements x € X such that p(x)=0 form a
Jlete subspace N of X and a norm on X/N (cf. Prob. 14, Sec. 2. 1) is deﬁned
P b by £l =p(x), where x €% and £ e X/N.

- 14. (Quotient space) Let Y be a closed subspace of a nor:med space
f:} e(); (X, || - ). Show that anorm || - ||o on X/ Y (cf. Prob. 14, Sec. 2.1) is defined
A0S . by
| Space ¢ [1%llo = inf |lx|
pera- § xef

ed by i -
{ where % € X/Y, that is, £ is any coset of Y.

w that ﬁ 15. (Product of normed spaces) If (X5, - 1l) and (X3, |- ]l.) are normed

i spaces, show that the product vector space X = X; XX, (cf. Prob. 13,
4 Sec. 2.1) becomes a normed space if we define
again

lxll = max (el lxal) [x = (x;, x5)].
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2 4 F inite Dlmensmnal Normed Spaces

and Subspaces '

Are finite dimensional normed spaces simpler than infinite dimensional &

ones? In what respect? These questions are rather natural. They are
unportant since finite dimensional spaces and subspdces play a role in

various considerations (for instance, in approximation theory and .

spectral theory). Quite-a number of interesting things can be. said.in
this connection. ‘Hence it is worthwhile to collect some relevant facts, 2

for their own sake and as tools for our further work This is our |

program in this section and the next one.

A source for results of the desired type is the following lemma
Very roughly speaking it states that in the case of linear independence
of vectors we cannot find a linear combination that involves large
scalars but represents a small vector.

2.4-1 Lemma (Linear combinations). Let {x;, - -, x,} be a lmearly
mdependent set of vectors in a normed space X (of any’ dzmenswn)
Then there is a number ¢>0 such that for every choice .of. scalars
ai, - -, a, we have

(n laixs+ - - +anx)|Z c(oy |+ - - - +|a;‘|) (c>0). ?

' Proof. We write s=|ay|+ - -« +|a,|. If s=0, all o; are zero, so
that (1) holds for any c¢. Let s>0. Then (1) is” equivalent to the

inequality which we obtain from (1) by dividing by s and writing
B; = a;/s, that is,

®) IBaxat - +permlze ( . Is )
Hence it suffices to prove the existence of a ¢>0 such that (2) holds

for every n-tuple of scalars By,- - -, B, with ¥ |B,|=

Suppose that this is false. Then there exxsts a sequence () of 3
vectors:

i

[ _

Ym = B(l )xl = = B : \Z IBf )I: 1) i

; j=1

such that

Yl —> 0 as m —- oo,
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Now we reason as follows. Since ¥, |B{™|=1, we have |8{™|=1. Hence
for.each fixed j the sequence : .

B™) =B, B, - - )

is bounded. Consequently, by the Bolzano-Weierstrass theorem, (8{™)
has a convergent subsequence. Let 3, denote the limit of that subse-
quence, and let (y1, m) denote the corresponding subsequence of (y,,). Bv
the same argument, (Yi.m) has a subsequence (yz m) for which the
correspondmg subsequence of scalars Bz converges; let 8, denote the
limit. Continuing in this way,; after n steps we obtain a subsequence
(Yrwm) = (Prt> Yniz> -+ +) Of (ym) whose terms are of the form

with scalars {™ satisfying - 'y('“)-——> Bi as m——> . Hence, as
m—> ob,

Yum > y= Zl B,-x,-
. ]= ’

where ). |8;}=1, so that not all B; can be zero. Since {x;,- - -, x,} is a

- linearly independent set, we thus have y#0. On the other hand,

Ynm —> y implies [|Ynm| —= |||, by the continuity of the norm. Since
lymll— 0 by assumption and (y;, m) is-a subsequence of (y,,), we must
have [[y,,m|— 0. Hence |ly|=0, so that y=0 by (N2) in Sec. 2.2.
This contradicts y# 0, and the lemma is proved. 8

: e T
As a first application of this lemma, let us prove the basic

2.4-2 Theorem (Comipleteness). Every finite dimensional subspace Y
of a normed space X is complete. In partlcular every ﬁmte dlmenszonal
normed space is complete.

Proof. We consider an arbitrary Cauchy sequence (y,,) in Y and
show-that it is convergent in Y; the limit will be denoted by y. Let
dim Y=nand {e,, - - -, e,} any basis for Y. Then each y,, has a unique
representation of the form -

Y =aMei+ - - - +a™e,,.
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Since (y,,) is a Cauchy sequence, for every & >0 there is an N such that o
Iym—yl<e when m, r>N. From this and Lemma 2.4-1 we have for §
some ¢>0 - '

b

&> |lym — vl = l 2, (@™ —af)e,

2c Y, Jafm - o

=1 - ji=1
. where m, r> N Division by ¢>0 givgs _
. n e : . £
Ia_](,m)._al(_r)|§ Z Ia§m)_a§r)l<; (m’ F>N).
. j=1

This shows that each of the n sequences
(i) =(af", a?,- .

is Cauchy in R or C. Hence it converges; let ¢;

denote the limit. Using
these n limits oy, - - - | a,, we define S

y%a1e1+-=~+ae

n-n-

Clearly, ye Y. Furthermore,

o |
n" ’ n l
1Y —'Y||="ZI' ('a}'")‘ i)ej| = Z Iaf"‘)—a,-l lle;ll- |
j=1" i=1- :
‘ ]
On the right, a}'")——+a4. Hence |y, —y|l—0, that is, Yimn —— Y. «J
This shows that (y,.) is convergent in Y. Since (y,.) was an arbitrary
Cauchy sequence in Y, this proves that Y is complete. ¥ -
From this theorem and Theorem 1.4-7 we have Ri
2.4-3 Theorem (Closedness). Every finite dimensional subspa(;'é Y of
a normed space X is closed in X. C
We shall need this theorem at several occasions in our further }
work. : _ i
Note that infinite dimensional subspaces need not be closed. T
Example. 1et X=C[0,1] and Y =span (x,, X1, ), where x;(1)= ¢ 1s
sO that Y is the set of all polynomials. 'Y

Is not closed in X. (Why?)
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This theorem is of considerable practical importance. For instance,
it implies that convergence or divergence of a sequence in a finite
dimensional vector space does not depend on the particular choijce of a
norm on that space. " ' - ' '

Problems

1. Give examples of subspaces of I and I? which are not closed.

2. What is the largest possible ¢ in (1) if X=R’ and x,=(1,0),
%=(0,1)?I X =R’ and x,=(1, 0, 0), x, = (0,1,0), x;=(0,0,1)?

3." Show that in Def. 2.4-4 the axioms of an e

quivalence relation hold (cf.
Al.4 in Appendix 1), '

4. Show that equi\}alent norms on a vector space X induce the same
~ topology for X. '

5. If ||-|| and - llo are equivalent norms on X, éhOW'.that the Cauchy
sequences in (X,]-])) and (X, [l o) are the same.

6. Theorem 2.4-5 impliés that.||- |, and ||-].. in Prob. 8, Sec. 2.2, are
equivalent. Give a-direct proof of this fact. . ' h

7. Let |- [l, be as in Prob. 8, Sec. 2.2, and let || - || be any norm on that
vector space, cail it X. Show directly (without using 2.4-5) that there is
a b>0 such that ||x||= b ||x}}, for all x.

8. Show that the norms| - ||, and - Il in Prob. 8, Sec. 2.2, satisfy

1 |
=I5l = e

9. If two norms || - || and |- ||, on a vector space X are equivalent, stiow
that (i) |x, — x| —> 0 implies (ii) llxn—x]|0—>_0 (and vice versa, of
course). ' '

10. Show that all complex m X n matrices A = (o) with fixed m and n
constitute an mn-dimensional vector space Z. Show that all riorms on
Z are equivalent. What would be’the analogues of I-1i, -1l and |- |..
in Prob. 8, Sec. 2.2, for the present space Z? : '
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Proof. Compactness implies closeanéss and” boundedness by

Lemma 2.5-2, and we prove the. converse. Let M be closed and

bounded. Let dim X = n and {e,, - "€} a basis for X. We consider
any sequence (x,,.)‘in.,M. Each x,; has a representation P

Xm =& 4 - s+ glMe,

Since M is bounded, so is (xpm), éay, x|l = k for all m. By Lemma
2.4-1, ° : ' : : '

e=tu= |5, gmelze 5 g
. = I=

where ¢>0. Hence the sequence of numbers (&™) (j fixed) is
bounded and, by’ the Bolzano-Weierstrdss theorem, has a.point of
accumulation &;; here I=j=n As'in the proof of Lemma 2.4-1 we
conclude that (x,) has 2 subsequence (z,) which converges to
2 =3 e, Since M is closed, z € M. This shows that the arbitrary sequence
(xm) in M has a subsequence -which converges in M. Hence M s
compact. N . _ T e -

no longer be done in the case of an infinite diniensional normed space.
A source of other interesting results is the following lemma by
F. Riesz (1918, PpP- 75-76). : '

2.%-4 F. Riesz’s Lemxma, Let Y and Z be subspaces of a normed space
X (of any dimension), and suppose that Y- is closed and is a’ proper
subset of Z. Then for every real number 0 in the interpal (0, 1) there is a
z € Z such that ' :

lZl=1 . l-ylz6foranyey.

Proof. We 'conslizier. ariy veZ-Y and denote its distance from
Y by a, that is (Fig. 19), '

a =inf lo—yl|.

yeY
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X

Fig. 19. Notations in the proof of Riesz’s lemma -

Clearly, a>0 since Y is closed. We now take any 6€(0,1). By the
definition. of an infimum there is a y, € Y such that

. : : . a : "
(1) | a=|v—y, =7

(note that a/6> a since 0< @ < 1). Let

T5

1 8,

§

=c(v— where . E. -
g oyl ~ @

Then ||z||=1, and we show that lz—yll= 6 for every ye Y. We have

Iz = yll=llc(v—yo)—y||
=c |lv—yo—cy|

=c flv—yl -
where

Y1 = y0+ C-ly.

The form of y, shows that 1€ Y. Hence |lv —yi||= a, by the definition
of a. Writing ¢ out and using (1), we obtain ~
L
=— =4,
llo—yol ~ a/0

lz=yl=cllo-yi|zca=

Since ye Y was arbitrary, this completes the proof. 1



- 2.5-5 Theorem (Finite dimension). . If a normed space X has the'!
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In a finite dimensional normed space ‘the closed unit ball is’ .
compact by Theorem 2.5-3. Conversely, Rlesz s lemma gives the
following useful and remarkable

property that the closed unit ball M ={x |||x||< 1} is compact, then X is
finite dzmenszonal :

Proof. We assume that M is compact but dim X = oo, and show.
that this leads to a contradiction. We choose any x; of norm 1. This x,
generates a one dimensional subspace X, of X, which is closed (cf.
2.4-3) and is a proper subspace of X since dim X =. By Riesz’s
lemma there is an x;€ X of .norm 1 such that ' |

—

I, = x1 || = 0==.

(\S)

.«

The elements x;, x» generate a two dxmensmnal proper closed sub- &
space X of X. By Riesz’s lemma there is an x3 of norm 1 such that for #

all x € X5 we have : ] % |
1 Teope
—xll==. 5
In particular,
1 R
||x3—x1||§5 ,

”x% X7”>§

hatty gty MY ULt at

Proceeding by induction, we obfa n a sequence (x,,) of elements x, e M
such that -

SRR

”xm _xn".§§ - (ﬂ’l?ﬁ n).

Obv1ously, (x,) cannot have a convergent subsequence. This con-
tradicts the compactness of M. Hence our assumption dim X = is 5o
false, and dim X <oo. 1 a2

This theorem has various applications. We shall use it in Chap. 8
as a basic tool in connection with so-called compact operators.

%:I‘&h Zorbenateni 5o o it vl Sheaed
) i B P ‘ g
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Compact sets.are important since- they are ‘‘well-behaved’: they
have several basic propertles similar to those of finite sets and not
shared by noncompact sets. In connection with continuous mappings a
fundamental property is-that compact sets have compact 1mages as
follows.

2.5-6 Theorem (Continuous mappmg) Let X and Y be metnc spaces
and T: X—> Y a continuous mapping (cf. 1.3-3). Then the zmage of
a compact subset M of X urider T is compact.

Proof. By the definition of compactness it suffices to show that
every sequence (y,) in the image T(M)< Y contains a subsequence
which converges in T'(M). Since y, € T(M), we have y, = Tx, for some
X, € M. Since M is compact, (x,) contains a subsequence: (x,‘k) which
converges in M. The image of (x,,) is a subsequence of (y,) which

converges in T(M) by 1.4-8 because T is continuous. Hence T(M) Is’
compact. @

From this theorem we conclude that the followmg property,
well-known from calculus for continuous functions, carries over to
metric spaces.

2.5-7 Corollary (Maximum and minimum). A continuous mapping T
of a compact subset M of a metric space X into R assumes a maximum
and a minimum at some points of M.

Proof. T(M)CR is compact by Theorem 2.5-6 and closed and
bounded by Lemma 2.5-2 [applied to T(M)], so that inf T(M) e T(M),
sup T(M) e T(M), and the inverse images of these two points consist of
points of M at which Tx is minimum or maxn:num respectively. B

" Problems

1. Show that R" and C" are not compact.

2. Show that a discrete metric space X (cf. 1.1-8) consisting of infinitely
many points is not compact.

3. Give examples of compact and noncompact cuives in the plane R2.
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- 4. Show that for an infinite subset M in the space s '(cf. 2:2-8) to be
compact, it is necessary that there are numbers v, y,, - - - such. that for B
all x=(&(x))eM we have |&(x)|=y. (It can be shown that the il
condition is also sufficient for the compactness of M.) 3

5. (Local compactness) A metric space X is said to be locally compact i |
every point of X has a compact neighborhood. Show that RandC and '
more generally, R" and C" are locally compact. 4

6. Show that a compact metric space X is locally compact,

7. If dim Y<oo in Riesz’s lemma 2.5-4, sﬁow that one can evén _choosé
6=1. '

8. In Prob. 7, Sec. 2.4, show directly (without using 2.4- 5) that there is
a >0 such that a||x||2<||x|| (Use 2.5-7) -

9. If X is a compact metnc space and M CX is closed, show that M i
compact

10. Let X and Y be nictri_c spaces, X compact, and T: X —> Y bijec_tiv'

2.6 | -Linear Operators

In calculus we consider the real line R and real-valued functions on
(or on a subset of R). Obviously, any such function is a mapping’ of _-.};f:_'
domain into R. In functional analysis we consider more general spaces,§
-such as metric: spaces and normed spaces, and mappings of these®
spaces. - :
In the case of vect r spaces and, in part.culm, normed spaces, a-’-_
mapping-is called an operator. .

Of special interest are operators which “preserve’ the two alge-"
braic operations of vector space, in the sense of the following definition.

2.6-1 Definition (Linear operator). A linear operator T is an
operator such that :

(i) the domain @(T) of T is a vector space and the range
" lies in a vector space over the same field,

* Some famlharlty with the concept of a mapping and simple related concepts i
assumed, but a review is included in A1.2; cf. Appendix 1. '

e,
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2.6 Linear Operators 83
(ii) for all x, y €@(T) and scalars g,
T(x+y)=Tx+Ty
» T(ax) = aTx. _ ”

Observe the notation; we write Tx instead of T'(x); this simplifica-
tion is standard in functional analysis. Furthermore, for the remainder
of the book we shall use the following notations.

a(T) denotes the domain of T. i

®(T) denotes the range of T.

N(T) denotes the null space of T.

By definition, the null space of T is the set of all x e?b(T) such that
Tx = 0. (Another word for null space is “kernel.” We shall not adopt
this term since we must reserve the word “kernel” for another purposc
in the theory of integral equations.)

We should also say something about the use of arrows in con--
nection with operators. Let (T) < X and R(T) < Y, where X and Y are
vector spaces, both real or both complex. Then T is an operator from
(or mapping of) @(T) onto R(T), written

T: &(T) —> 9(T),
or from %(T) into Y, written
T: (T)—> Y.
If @(T) is the whole space X, then—and oﬁnly' then—we write
T. X—> Y.
Clearly, (1) is equivalent to

(2) T(ax +By)=aTx+BTy."

By taking a =0 in (1) we obtain the following formula which we

shall need many times in our further work:
|icepts is
= | T0=0.
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Formula (1) expresses the fact that a linear operator T is
‘homomeorphism of a vector space (its domain) into another vectdy|
Space, that is, T preserves the two operations of vector space, in thj

being “the same. This property makes linear operators important. 15

turn, vector spaces are important ‘in functional anzil’ysis mainly becausg| e

of the linear operators defined on them. 7 = ‘
We shall now consider some basjc examples of linear operato

Examples

2.6-2 Identity operator. The identity operator Ic: X —> X is e'f.;f" l
by Ixx =x for all xe X. We also ‘write'simply I for Ic; thus, Ix =y, A

2.6-3 Zero operator.. The zéro operator. 0: - X ——» Y 4s defined
Ox =0 for all xe X_ : : : g

2.6-4 Differentiation. Let X be the vector space of aﬂ polynomials
on [a, b]. We may define a linear operator T on X by setting '

Tx () =x'(f)

for every x € X, where the prime denotes diﬁerentiation with réspect a _
t. This operator- T maps X onto itself. 2

2.6-S Integration. A linear operator T from Cia, b] into itself can
defined by

Tx(t) = I' x(7) dr te[a, b]

2.6-6 Multiplication by t. Another linear Operator from C[a, b] into
itself is defined by ' ¥

Tx()=tx(r).

T plays a role in physics (quantum theory), as we shall see in Chap. 11
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T is ag - . . _

r VeCtﬁr 2.6-7 Elementary vector algebra. The cross product with one factor
in thed® yept fixed defines a linear operator Ti: R*— R®. Similarly, the dot

* Spacey product with one fixed factor defines a linear operator T,: R®>— R,
ap thef qay, _ o

1y into; Tox=x-a=¢a,+&Eaz+ Ea,

l111(30_1‘[1(3 i

ant. Ini# where a = (o) e R’ is fixed.

2.6-8 Matrices. A real matrix A =(ap) with r rows and n columns

erator T: R" —> R’ by means of
erators defines an op y

‘n each 3 y =Ax

where x =(§) has n components and y =(m;) has r ¢components and
both vectors are written as column vectors because of the .usual
convention of matrix multiplication; writing y = Ax out, we have

fefined | o
X=x @ KT ap ap ot an||é
N2 T 7 I P |
red by & nr . .
{Omials ' |_’n,J L0 Qe 7t O
' L&,
T is linear because matrix multiplication is a linear operation. If A
#i were complex, it would define a linear operator from C" into C'. A
pect to fi detailed discussion of the role of matrices in connection with linear
| operators follows in Sec. 2.9. 1
can be E In these examples we can easily verify that the ranges and null

i spaces of the linear operators are vector spaces. This fact is typical. Let
_ i us prove it, thereby observing how the linearity is used in simple
« proofs. The theorem itself will have various applications in our further
{a, b]- 4 WO]‘k, ‘—

'_ 2.6-9 Theorem (Range and null space). Let T be a linear operator.
& Then:

J] into
(@) The range R(T) is a vector space.
(b) If dim @(T)=n <o, then dim R(T)=n.

(¢) The null space N(T) is a vector space.
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Proof. (a) We take anyy;, y» € %(T) andshowthatay, + By. € 92(7‘)
for ‘any ‘scalars a, . Since  yy, y2€ R(T), we have Y= Txh
y> = Tx, for some X;, x,€(T), and ax, + Bx; € B(T) because W(T) is a
vector space. The hneanty of T yields

T(ax;+ Bx;) = aTx, + Bsz = ay, + Byz.

Hence ay; + By: € R(T). Since y1, Y2 € R(T) were arbltrary and SO were
the scalars, this proves that R(T).is a vector space.

(b) We choose n+1 elements y;, - - -, y,51 of R(T) in an l‘_e:_
arbitrary fashion. Then we have y;=Tx;, - -, yns+1= TX4, for some
X1,y Xps1 0 D(T). Since dim Q)(T)—n this set {xj,- -, X4}
must be linearly dependent. Hence - , a

arxy+ - Fap 1 X,41=0

for some scalars al, **, On+1, DOt all zero. Since T is linear and
TO=0, application of T on both sides gives

T(oyx,+ - - - +.a,.+1xn+1) Za1y1+ 00 T a1 Y1 =0.

This shows that {yy, ** -, yn+1} is a linearly dependent set because the
a;’s are not all zero. Remembering that this subset of R(T) was chosén
in an arbitrary fashion, we conclude that ®(T) has no linearly independ-
ent subsets of n+1 or more elements. By the definition this means 3§
that dimR(T=n :

(¢) We take any x,, x, € N(T). Then Tx,= Tx,=0. Since |
T 1s lmear for any scalars a, B we have

B T(ax_1 + sz) =.aTx1 + BTX2 =0.
This shows that ax,+ Bx, € N(T). Hence N(T) is a vector space. 1 i!

An-immediate consequence of part (b) of the pioof is worth
noting:” ;

Linear operators preserve linear dependence.

SR

Let us turn to the inverse of a linear operator. We first remember
that a mapping T: @(T)—> Y is said to be injective or one-to-one if

o i

—

pU—

L]

~

‘.
|
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Tx, # Txy;

equivalently,

(4%) Txy=Txz2 == % = ot .
In this case there exists the mapping

T S(T)—> A(T)
> Yob—>Xo " (yo= Tx(;)

which maps every yo € %(T) onto that xo€ %(T) for which Txo = y,. See
Fig. 20. The mapping T ' is called the inverse® of T.

2(m T

X Y

Fig. 20. Notations in connection with the inverse of a mapping; cf. (5)

From (5) we clearly have

T *Tx=x "~ for all xe®(T)

j TT 'y=y for all yeR(T).

In connection with linear ope.'r'ators on vector.spaces the situation
is as follows. The inverse of a linear operator exists if and only if the
null space of the operator consists of the zero vector only. More

—
T

o oy s A

wmbcr

f ° The reader may wish to review the terms “‘surjective” and “bljectlve in A1.2,
l-Olle 1

Appendix 1, which also contains a remark on the use of the term “inverse.’
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précisely_',- we have the following useful criterion which we shall appl'_
quits often. : : .

- 2.6-10 Theorem (Imverse operator). Let X, Y be vector spdces, bét -'_ : _
real or both complex. Let T: &(T)—> Y be a linear operator withg®
domain @(T)< X and range R(T)< Y. Then: '

(a) The inverse T R(T) —> B(T) exists if and only if

Tx=0 = —— Al-qc'=0.
(b) If T exists, it is a linear operator.
() If dim (T) = n < and T~ exists, then dim R(T) = dim (T). §F

Proof. (a) Suppose that Tx=0 implies x=0. Let Tx1=Tx2._
Since T is linear, RESEN n : '

= : T(x1—x3) = Tx,— Tx,=0, -

so that 5c1-.-’x2=. 0 by thc,hypotlhesis. Hence Tx, = Tx, implies x;=x,, ]
and T~" exists by (4™). Conversely, if T~* exists, then (4*) holds. From £
(4*) with x,=0 and (3) we obtain .

TX1=T0=O m— _ x1=0.

This completes the proof of (a).

(b) We assume that T—* exists and show that 7! is linear. ‘_-

The domain of T is ®(T) and is.a vector space by Theorem 2.6-9(a). .
We consider any xi, x,€9(T) and their images ' S

i = Txl and Va2 = sz.

Then
X1 = ’I'—.lyl ks _and Xp = T—lyz.
T is linear, so that for any scalars « and B we have

ay;+ By, =alx,+ BIxz= T(axy+ Bx,).



o 2.6-4?

g 6. If the product (the composite) of two linear operators exists, show that i

920 o | Normed Spaces. Banach Space

Applying T~! and using T 'T= I, we obtain the desired result
TIT(STY ' =(ST) ' = 'I"‘S“l -

This completes the proof. #§

Problems

1. Show that the operators in'2.6-2, 2.6-3 and 2.6-4 are linear.
2. Show that the operators Ty, -, T, from R? in'to itz defined by o
(& ED—> (£, 0)
& I 0,8
(&1, E—> (&, &)
(£1, &) (vé1, 762)
respectively, are linear, and mterpret these. Operators. geometrically. "
3. What are the domain, range and null space of T, T,, T; in Prob. ;
4. What is the null space of’l} in Pfob. 22 Of T, and T, in 2.6-7? Of T -

5.Let T: X——>Y be a linear operator Show that the 1mage of

subspace V of X is a vector space, and so is the inverse image of
subspace W of Y. B

it is linear.

7. (Commutativity) Let X be any vector space and S: X —> X and
.T: X —> X any operators. S and T are said to commute if ST =TS,
that is, (ST)x = (TS)x for all x e X. Do T, and T in Prob. 2 commute?

8. Write the operators in Prob. 2 using 2 X2 matrices.

9. In 2.6-8, write y = Ax in terms of components, show that T is linear
and give examples. :

10. Formulate the "condition in 2.6-10(a) in terms of the null space of T. {i}
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11..Let X be the vector space of all complex 2% 2. matrices and define
T: X —> X by Tx =bx, where b € X is.fixed and bx denotes the usual
product of matrices. Show that T is linear. Upder what condition does
T exist? g K B

12. Does the inverse of T in 2.6-4 exist?

13. Let T: (T)——> Y be a linear operator whose inverse exists. If

{x;,° -+, %,} is a linearly independent set in @(T), show that the set
{Tx,, " -+, Tx,} is linearly independent. :

14. Let T: X——> Y be a-linéar operator and dim X =dim Y =n <o,
Show that R(T) =Y if and only if T* exists. . _

15. Consider the vector space X of all real-valued functions which are
defined on R and have derivatives of all orders everywhere on R.
Define T: X ——> X by y(t) = Tx(¢) = x'(t). Show that R(T) is all of X
but T ' does not exist. Compare with Prob. 14 and comment. -

2.7 Bounded and Continuéils Linear Operators

The reader may have noticed that in the whole last section we did not
make any use of norms. We shall now again take norms into account,
in the following basic definition.

2.7-1 Definition (Bounded linear operator). Let X and Y be normed

spaces and T: 9(T) —> Y a linear operator, where .9(T)<-X. The _

operator T is said to be bounded if there is a real number ¢ such that
for all x e®(T), ' -

1) ITxll=cllxf. . g

In (1) the norm on the left is that-on Y, and the norm on the right
is that on X. For simplicity we have denoted both norms by the same
symbol |||, without danger of confusion. Distinction by subscripts
(lxllo, | Tx|l1, etc.) seems unnecessary’ here. Formula (1) shows that a
bounded linear operator maps bounded sets in @(T) onto bounded sets
in Y. This motivates the term “bounded operator.”

Waming. Note that our present use of the word “bounded” is

different from that in calculus, where a bounded function is oné whose
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range is a bounded set. Unfortunately, both terms are standard. But 4

there is little danger of confusion.

What is the smallest pessible ¢ such that (1),A.-still holds for al} %

nonzero x € ¥(T)? [We can leave out x =0-since Tx =( for x=0 by

(3), Sec. 2.6.] By division,

T _

| E

and this shows that ¢ must be at least as big as the -supremum of the "__f'_':':;
expression on the left taken over %(T)—{0}. Hence the answer to our
question is that the smallest possible ¢ in (1) is that supremum. This &8

quantity is denoted by || T]; thus.

| ' T
@ = sup 12

X
x€a(T) "x” .
x#0 _

T} is called the norm of the operator T. It E’D(T)={0}=, we define
IT|=0; in this (relatively uninteresting) case, T=0 since TO=0

by (3), Sec. 2.6. o
Note that (1) with c=|T] is

3) o ATxdsiTy.

This formula will be applied quite frequently.
Of. course, we should justify the use of the term “norm”. in the
present context. This will be done in the following lemma.

2.7-2 Lemma (Norm). Let T be a bounded linear operator as defined
in 2.7-1. Then: '

(a) An alternative formula for the norm of T is

4) ITI= sup ||Tx.
| ekt

(b) The norm defined by (2) satisfies (N1) to (N4) in Sec. 2.2.

[N
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Proof. (a) We wwrite "x||=aand set y'= (1/a)x,. where x# 0. Then
Iyl =lxl/a =1; and since T is linear, (2). gives

ITi= sup —||ITx]|= sup T(—x) = sup ||Ty]|l.
xea(T) & xea(T) N4 yeD(T)
x#0 . x3#0 : _ livll=1

Writing x for y on the. right, we have (4). |
(b) (N1) is obvious, and so is 0] =0, From |T|=0 we

have Tx =0 for all x €e(T), so that T=0. Hence (N2) holds. Further-
more, (N3) is obtained from h :

sup llaTx| ey lee| | Tx]| = || iy Il Tx]|

fix}l=1
where x € %(T). Finally, (N4) follows from
xfl=1

sup (T, + Ts)x|| ‘='"8}|1p I T3 + Tox]] éﬁlp Ty x| +“s;1p HTaxl;
xll=1 - x||=1 x{|=1 _

>~

here, xe W(T). 1§

Before we comnsider general prbperties of bounded . linear
operators, let us take a look at some typical examples, so that we get a
better feeling for the concept of a bounded linear operator.

Examples

2.7-3 ldentity operator. The identity operator I: X—> X on a
normed Space X#{0} is bounded and has norm Il|=1. Ct. 2.6-2.

2.7-4 Zero operator. The zero operator 0: X —— Y on a normed.
Space X is bounded and has norm ol =0. Cf. 2.6-3.

2.7-5 Differentiation operator. Let X be the normed space of all
polynomials on J=[0,1] with norm given |[x||=max|x(t)|, teJ A
differentiation operator T is defined on X by

Tx(t)=x'(¢)
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where.the prime denotes differentiation with respect to t. This operator
is linear but not bounded. Indeed, let x,(f)= t", where neN. Then
lx.l=1 and S o

Tx. () =x,"(t)=nt"!

50 that | Tx,| = n and || Tx,|/llx.|| = n. Since n €N is arbitrary, this shows 1
that there is no fixed number ¢ such that || Tx,||/||x.|| = c. From this and

(1) we conclude that T is not bounded. -
’ Since differentiation is an important operation, our result seems to
indicate that unbounded operators are also of practical importance. 4.
This is indeed the case, as we shall see in Chaps. 10 and ‘11, after a &

detailed study of the theory and application of bounded operators,
which are simpler than unbounded ones. :

2.7-6 Integral operator. We can define an integral operator f
T: C[0,1]—/ ([0, 1] by : '

Ay =Tx ‘wh_ere g y(t)= I k(t, T)x(7) dr.
0

Here k is a given function, which is called the kernel of T and is B
assumed to be continuous on the closed square G=JXJ in the
t7-plane, where J = [0, 1]. This operator is linear. '

T is bounded. o

To prove this, we first note that the continuity of k on the closed
square implies that k is bounded, say, |k(t, 7)|=k, for all (¢, 7)e G,
where ko is a real number. Furthermore, '

lx(0f= max [x(1)] =|}x].

Hence

=Tl = max || ke, (o) i

0
1
§majx tk(t, 7)| [x(7)] dr -
teJ Jo

= ko llx]].




itor

y=Ax

5)

where x=(&) and y =(;) are eolumn' vectors w1th n and r compo-
nents respectwely, and we used matrix multlphcatlon as in 2.6-8. In
terms of components, (5) becomes .

) w= Y ek (=1,

T is linear because matrix multiplication is a linear operation.
T is bounded.

To prove this, we first rcmember from 2.2-2 that the norm on R™

is glven by

i=( % &)™

m=1

similarly for y e R". From (5’) and the Cauchy- Schwarz inequality (1 1)
in Sec. 1.2 we thus obtain

r

= Y= 5[ 5 a,kgk]

k=1

(573,627

L \c=1

=

£M~

]

—uxn2 5 Z .

j=1k=

Noting that the double sum in the last line does not depend on x, we
can write our result in the form

r n
NTx|P = 2| where A=) Y ay?
_ ji=1k=1

This gives (1) and completes the proof that T is bounded. @
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" The role of matrices in connection with linear operators will- .
studied in a separate section (Sec. 2.9). Boundedness is typical; it is ap)]
essential simplification which we always have in the finite dlmensmn
case, as follows. |

&

2.7-8 Theorem (Finite dimension). If a normed space X is
dimensional, then every linear operator on X is bounded.

Proof. Letdim X =n and {ey, - - -, e,} a basis for X.. We take any
x=) &e; and consider any linear operator T on X. Since T is linear, §

|Z &iTe

(summatlons from 1 to n). To the last sum we apply Lemma 2.4-1 wit {";
=& and x; =e;. Then we obtain

Z|§,|<—“Zae,“. el

ITxl| =

= Y1611 Te | =max | Te 2 14|

Together,

_ 1
| Tx||= v li] where y=_max||Te,.

From this and (1.) we see that T is bounded. §

We shall now consider unportant general properties of bounded
linear operators.

operator T is continuous at an xo€ 9(T) if tor every € >0 there is a
6 >0 such that , '

| Tx — Txol|< e for all x € @(T) satisfying llx — xol| < &.

T is continuous if T is continuous at every x € (7).
Now, if T is linear, we have the remarkable
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2.7 Bounded and Continuous Linear Operators

.o

2.7-9 Theorem (Continuity and boundedness). Let T: 9(T)—> Y -
be a linear’ operator, where AT)<=X and X, Y are normed spaci - %

Then: ’ - - ’ .

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

Proof. (a) For T=0 the statement is trivial. Let T O Then
| T||l#0. We assume T to be bounded and consider any xo€(T). Let
any € >0 be given. Then, since T is linear, for every x € @(T) such that -

£

lx — xoll < & where =
IT|

5=
we obtain
1T = Txoll= I T(x — xo)l| = | T}l }x — xof| <|| T = e.

Since xo€ @(T) was arbitrary, this shows that T js continuous.

Cox.wersely, assume that T is continuous at an arbitréry Xo€D(T)
Then, given any ¢ > 0, there is a > 0 such that .

(6) | Tx—Txoll=e for all x € @(T) satisfying llx ~xol| = 8.
We now take any y# 0 in 9(T) and set ' f
X =x9+ o y Th ' 8
= Xo+— . : A, D '
Ty -~ TRTIM )

Hence ||x — xo|| = 8, so that we may use (6). Since T is linear, we have -

e I T)| BTN

7 - )
operagr:l’.’ntl;;g;o Unfortunately, continuous linear operators are called “linear
ot e & ra::r:ie allufhors. We shall.not adopt this terminology; in fact, there are linear
TS furlzh cal importance which are not continuous. A first example is given in
€I Operators of that type will be considered in Chaps. 10 and 11.
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and (6) implies

— e

pioI=e s Inlsghl

This can be written |[|Ty||= c||y|| where ¢ = £/8, and shows that T is
bounded.

(b) Continuity of T at a point implies boundedness of T
by the second part of the proof of (a), which in turn implies continuity =
of Tby(a). ¥ ~ 4

2.7-10 Corollary (Contmmty, null space). Let T be a bounded linear
operator. Then: T

(@) x, —> x [where x,, x € ¥(T)] implies Tx, —> Tx.

() The null space N (T) is closed.

Proof. (a) follows from Theorems 2.7-9(a) and 1.4-8 or dlrectly
fram (3) because, as n ——> @,

| Tx. — Tx|| =|IT (x,._ = =ITllllxn — x| — 0.

A - (b) For every xeN(T) there is a sequence (x,) in N(T)
such that x,, —> x; cf. 1.4-6(a). Hence Tx, —> Tx by part (a) of this
Corollary. Also Tx =0 since Tx, =0, so that x € N(T). Since xeN(T)
was arbitrary, N(T) is closed.

It is worth. noting that the range _of a bounded linear operator may
not be closed. Cf. Prob. 6. '

The reader may give the simple proof of another useful formula,
namely, -

) T2 TRl = I T T, I =lT)" ("em i

valid for bounded linear operators To: X—— Y, T;: Y— Z and
T: X —> X, where X, Y, Z are normed spaces. :

Operators are mappings, and some .concepts related to mappings® &
have been discussed, notably the dorhain, range and null space of an

8 A review of some of these concepts is given in Al1.2; cf. Appendix 1.

S e 3
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o wo further concepts (restriction and extension) will now be
: og;;ztogb ;r":d uld have done this earlier, but we prefer to do it here,

. here.we can immediately give an interesting application (Theorem
] ;" 7-11, below). Let us begin by defining equality of operators as
Tis 8 follows. ' '

Two operators T, and T are defined to be equal, written

of T |

Tl = T2)

if they have the same domain %(T,) =%(T}) and if Tix = T,x for all
near @ | co(T)=a(Ty). .

The restriction of an operator T: P(T)—Y to a subset
B < 9(T) is denoted by -

Tl

ectly i “
. @ and is the operator defined by
Tlo: B Y, R o
N(T) An extension of T to a set M >%(T) is an operator
f this
NT) & ~

T"M—Y such that Tlom =T,

‘may @ that is, Tx=Tx for all x€9(T). [Hence T is the restriction of T to

.n'u}:: T If B(T) is a proper subset of M, then a given T has many
. 3¢ extensions. Of practical interest are usually those extensions which
for instance linearity (if T happens to be
(T) lies in a normed space and T is

7 and ; , orem is typic _

: 8 .I_t_c_o_ncems an extension of a bounded linear operator T to the closure
Sines® (T) of the domain such that the extended operator is again bounded
of %m and linear, and even has the same norm. This includes the case of an

. Sxtension from a dense s
jincludes the cage of ag
4 completion (cf. 2.3-7).

et in a normed space X to all of X. It also
extension from a normed space X to its

A
i
)

L
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2.7-11 Theorem (Bounded linear extension)._ Let
T: &(T)—> Y

be a bounded linear operator, where @(T) lies in a normed space X '5‘-'nd"'_
Y is a Banach space. Then T has an extension i

T: %—a _Y
where T is a bounded linear operator-of norm
I =N, |
Proof. We consider any x € @(T). By Theorem 1.4-6(a) there isa t

sequence (x,) in 9(T) such that x,—> x. Since T is linear and §
bounded, we have

WX = Tl = 1 TCen — xS Tl — 2l - sg
This shows that (Tx,) is Cauchy because (x,) converges. By asstmp- ¢
tion, Y is complete, so that (Tx,) converges, say, o

Tx, —> yeY.

We define T by

-

- Tx= y-

We show that this definition is mdependent of the particular choice of
a sequence in @(T) convérging to x. Suppose that x, — x and
z, — x. Then v, —> X, where.(v,,,) is the sequence

) (xl, Zy, X2, Zoy " ')'_

Hence (Tv,,) converges by 2.7-10(a), and the two subsequences (Txn) '.
and (Tz,) of (Tv,.) must have the same limit. This proves that T is ?;
uniquely defined at every x e?D(T)

Clearly, T is linear and Tx = Tx for every x € @(T), so that T is an i
extension of T. We now use

FETY- %

I Tall = 1T 1l
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and let n——> 0. Then Tx" BE— y= Tx. Since x+—— "x" defines a ‘ ' ' —]
continuous mapping (cf. Sec. 2.2), we thus obtain

ITxl= Tl

Hence T is bounded and IT|=|T|. Of course, 1T =T because the ]
norm, being defined by a supremum, cannot decrease in an extension. 0
Together we have |IT||=|T|l. 1 . . |

Problems : i

1. Prove (7).

2.let X and Y be normed spaces. Show that a linear operator
T: X—>Y is bounded if and only if T maps bounded sets in- X into
bounded sets in Y. _ _ l

3. It T#0 is a bounded linear operator, show that for any x € 9(T) such |
that ||x]| <1 we have the strict inequality || Tl <||T. r

4. Give a direct proof of 2.7-9(b), without using 2.7-9(a).

S. Show that the operator T: I — |* defined by y =(m)=Tx, n;, = &/j,
x =(§), is linear and bounded.

6. (Range) Show_ that the range R(T) of a bounded linear operator
T: X—— Y need not be closed in Y. Hint. Use T in Prob. 5.

fiimaam s

7. (Inverse operator) Let T be a bounded linear operator fron'_1 a normed
space X onto a normed space Y. If there is a positive b such that

CI

| Txl|= bllx|| for all x e X,

show that then T™': Y —— X exists and is bounded. J

8.'Show that the inverse T !: R(T)—> X of a. bounded linear operator - !
T: X— Y need not be bounded. Hint. Use T in Prob. 5.

9. Let T: C[0, 1]—>CJ0, 1] be defined by :;'J

y() = j ' x(r) dr. ]

Find ®(T) and T': R(T)—> C[0,1]. Is T linear and bounded? ]
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10. On C[0, 1] define S and T by

0

yo=s[ x0ds  ye=sxs,

respectively. Do Sand T commute? Find ||S|| \Til, IST|| and || TS].

11. Let X be the normed space of all bounded real-valued functions on
with norm defined by

flx}l = sup |x(r)},
teR

and let -T: X —> X be defined by
y(t)=Tx{t) = x(t—A)

where A>0 is a constant. (This is a model of a delay line, which is
electnc device whose output y is a delayed version of the input. x, g::j'f
time delay bemg A; see Fig. 22.) Is T linear? Bounded? :

wf | % [T rw-x-o / N7 \/,?.

f ———

a5

Fig. 22. Electric delay line

S e

e

=

At

.._u\s.“?;;_

2. (Matrices) From 2.7-7 we know that an r X n matrix A = (ay) deﬁnﬁ
a linear operator from the vector space X of all ordered n-tuples ¢
numbers into the vector space Y of all ordered r-tuples of numbcmﬁ“h
Suppose that any norm ||-|}; is given on X and any norm ||-|}, is given o5
Y. Remember from Prob. 10, Sec. 2.4, that there are various norms oﬂ"'
the space Z of all those matrices (r and n fixed). A norm |-|| on Zﬁ
said to be compatible with ||-}|; and ||-|, if

lAxl = ANl
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is compatible with -, and ||-|,. This norm is often called the natural
norm defined by []- and ||-|.. ¥ we choose |x|l,=max|£|
and |ly|l. = max |»;|, show that the natural norm is . '

lAll = max Z lotac].

k=1 -

13. Show-thatin 2.7-7 with r=mn, a conipatible norm is defined by

-nAu%@ Z e

butforn>1 thlS is not the natural norm defined by the Euchdean norm
on R".

14. If in Prob. 12 we choose

lixlly = Z &, liyll.= Z i,

show that a compatible norm is defined by
||A||=m3x Z |t |-
i=1

15. Show that for r= n, the norm in Prob. 14 is the natural norm corre-
sponding to ||-||; and ||-|l, as defined in that problem.

2.8 Linear Functionals

A functional is an operator whose range lies on the real line R or in
the complex plane C. And functional analysis was. initially the analysis
of functionals. The latter appear so frequently that specxal notations
are used. We denote functionals by lowercase letters f, g, h, , the

-~

[T

H . Lo
= et

L___
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domain of f by @(f), the range by QR(f) and the value of f at an x egb(j)
by f(x), with parentheses.

Functionals are operators so that previous definitions apply. We | ii'-'":z'
shall need in particular the following two definitions because most of
the functlonals to be considered will be linear and bounded. 3

2.8-1 Definition (Linear functional). A linear functional f is a linear
operator with domain in a vector space X and range in the scalar field
K of X; thus,

fr 9(H)—K,

* where K=R if X is real and K =C if X is complex. 1
2.8-2 Definition (Bounded linear functional). A bounded linear
functional f is a . bounded linear operator (cf. Def. 2.7-1) with range in -

the scalar field of the normed space X in which the domain 3(f) lies.
Thus there exists a real nuimber ¢ such that for all x € 9(f),

(1) - el = ¢ il

Furthermore, the norm of f is [cf. (2) in Sec. 2.7]

(2a) Ifl= sup L) )
: | xealn x|
or
(2b) Ifl= sup |7 i

“xll—'

Formula (3) in Sec. 2.7 now implies

» [FI=H il

and a special case of Theorem 2.7-9 is

2.8-3 Theorem (Continuity and boundedness). A linear functional f

with domain Qb(f) in a normed space is continuous if and only if f is
bounded.
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Examples

2.8-4 Nonﬁ. The.norm ||| : X — R on a normed space (X, ) is a
functional on X which’is not linear. : -

2.8-5 Dot product. The familiar dot product with one factor kept
fixed definies a functional f: R*—— R by means of

f)=x-a=fion+bra+ fas,

where a =(a;) eR? is fixed.
f is linear. f is bounded. In fact,

GOl = 1x - al=xal,

ear
2 in

. so that ||f]| =||a]] follows from .(2b) if we take the supremum over all x
ies.

of norm one. On the other hand, by taking x =a and using: (3) we
obtain ' :

=@ _lal

Ml _fal_,
lal ~ Jaff =

Hence the norm of f is ||f[|=||a].

2.8-6 Definite integral. The definite integral is a number if we con-
sider it for a single function, as we do in calculus most of the time.

for all functions in a certain function space. Then the integral becomes

a functional on that space, call it f. As a space let us choose Cla, b]; cf. -
2.2-5. Then f is defined by ‘ -

fy= j : x(t) dt x € Cla, b].

f is linear. We prove that f is bounded and has norm Ifll= b—a.

In fact, writing J =[a, b] and remembering the norm on C[aq, b],
we obtain - ‘ _ :

Lf(x)| =

J x(1) d(l =(b—a) max [x(D)]=(b—a)|x]|.

te

However, the situation _changes completely if ‘we consider that integral —
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Taking the supremum over all x of norm 1, we obtain |If|=b—-a. T

get |fl=b—a, we choose the particular x =x,=1, note that [|xo=1
and use (3): Con ' : .

S [

- "xo" _

2.8-7 Space (Cla, b). Another practically ﬁnpb_rtant__ functional og
Cla, b] is obtained if we choose a fixed toe J=[a, b] and set

fi(x) = x () _ x€ Cla,b)

f1 is linear. f, is bounded and has norm || il =1. In fact, we have

160 =[x (o) =],

and this implies |f1]|=1 by (2). On the other hand, for Xo=1 we have
llxoll=1 and obtain from (3) = -

lfll = Ifu(x0)| = 1.
2.8-8 Space I°. We can obtain a linear functional f ‘on the Hilbert:
space I” (cf. 1.2-3) by choosing a fixed a = (a;) € I? and setting

b AT

[

where x = (&) e 1%, This series convergés absolutely.and fis bounde‘_d,'
since the Cauchy-Schwarz inequality (11) in Sec. 1.2 gives (summation

over j from 1 to =) ;
=Y lgesl= /T &P VI ley = lix] fal.

It is of basic importance that the set of all ‘hinear functionalst
defined on a vector space X can itself be made into a vector space|
This space is denoted by X* and is called the algebraic® dual space of
X. Tts algebraic operations of vector Space. are defined in a natural wiis:

fx)|= |Z &

°Note that this definition does not inve

Ive a norm. The so-called dual-space 3 !
counsisting of all bounded linear functionals on

X will be considered in Sec. 2.10.
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as follows. The surm fi+f2 of two functionals f and fz is the functlonal
s whose value at every x € Xis

s(x)=(fr+f2)(x) = fu(x) 4‘fz(x);

the product af of a scalar a and a functlonal f is the functlona, p
whose value at x € X is

p(x) = (af)(x) = af(x). .

Note that this agrees with the usual way of adding- functions and
multiplying them by constants.

We may go a step further and consider the algebraic dual (X*)* of
X*, whose elements are the linear functionals defined on X*. We
denote (X™)* by X ** and call it the second zigebraic dual space of X..

Why do we consider X**? The point-is that we can obtain an
interesting and important relation between X and X™*, as follows. We
choose the notations:

Space | General element | Value at a point

N

x —
xX* f flx)
X** g gth

We can obtain a g€ X™*, which is a linear functional defined on X*,
by choosing a fixed x € X and setting ;

4) glH= &(ﬁ = f(x) (x € X fixed, fe X* variable).

The subscript x is a httle reminder that we got g by the use of a certain

x € X. The reader should observe carefully that here f is the variable

whereas x is fixed. Keeping this in mind, he should not have dlfﬁcultles

in undetstanding our present consideration. t
& as defined by (4) is linear. This can be seen. from

&dafi+ Bfo) = (afy + Bf2)(x) = afi(x) + Bfa(x) = ag.(f1) + Bg:(f).

Hence g, is an element of X**, by the definition of X**.
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- To each x€ X there corresponds a g, € X**. This defines a map- {8

ping |
C: X — X**

X g,

C is called the canomnical mapping of X into X**,
C is linear since its domain is a vector space and we have

(Clax ;rﬁy))(f) = Zux+8y ()
= f(ax+By)
L =af(x)+Bf(y)
= ag.(f) +Bg,(f)
= a(Cx)()+B(Cy)(P).

C is also called the canonical embedding of X into X**_ To
understand and motivate this term, we first explain the concept of
“isomorphism,” which is of general interest.

In our work we are concerned with various spaces. Common to
all of them is that they consist of a set,-call it X, and a “‘structure”
defined on X. For a metric space, this is the metric. For a vector space,
the two algebraic operations form the structure, And for a normed
space the structure consists of those two algebraic operations and the
norm. L '

Given two spaces X and X of the same kind (for instance, two
vector spaces), it is of interest to know whether X and X are “essen-
tially identical,”” that is, whether they differ at most by the nature of
their points. Then we can regard X and X as identical—as two copies
of the same “abstract” space—whenever the structure is the primary
object of study, whereas the nature of the points does not matter, This
situation occurs quite often. It suggests the concept of an isomorphism.
By definition, this is a bijective mapping of X onto X which preserves
the structure.

Accordingly, an isomorphism T of a metric space X = (X, d) onto a
metric space X=(X, d) is a bijective mapping which preserves dis-
tance, that is, for all x, ye X,

d(Tx, Ty) = d(x, y).

o
R S
<R3
0
L4
v
.
]
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X is then called. isomorphic with X. This is nothing new to us but
mcrgl& another name for a bijective isometry as introduced in Def.
1.6-1. New is the following. ,

' An isomorphism T of a vector space X onto a vector space X over
the same field is a bijective mapping which preserves the two algebraic -

operations of vector space; thus, for all x, y € X and scalars a,
T(x+y)=Tx+Ty, T(ax)=aTx,

that is, T: X— X is a bije_cEive linear operator. X’ is then called
isomorphic with X, and X and X are called isomorphic vector spaces.

Isomorphisms for normed spaces are vector space isomorphisms
which also preserve norms. Details follow in Sec. 2.10 where we need
such isomorphisms. At present we can apply vector space isomor-
phisms as follows.- - |

It can be shown that the canonical mapping C is injective. Since C
is linear (see before), it is an isomorphism of X onto the range
R(C) = X**, ' _ “

If X" is isomorphic with a subspace of a vector space Y, we say that
X is embeddable in Y. Hence X is embeddable in X**, and C is -also
called the canonical embedding of X into X**. :

If C is surjective (hence bijective), so that R(C) = X** then X is
said to be algebraically reflexive. We shall prove in the next section
that if X is finite dimensional, then X is algebraically reflexive.

A similar discussion involving norins ‘and leading to the concept of
reflexivity of a normed space will be presented later (in Sec. 4.6), after
the development of suitable tools (in particular, the famous Hahn-
Banach theorem). : '

Problems

1. Show that the functionals in 2.8-7 and 2.8-8 are liriear.

2. Show that the functionals defined on C{a, b] by

filx)= J x(t)&o(t) dt (yo€ Cla, b))

f2(x) = ax(a) + Bx(b) (a, B fixed)

are linear and bounded.
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3. Find the norm of the linear functional f defined on C[—1, 1] by

fx)= J: x(t) dt—J: x(_t) dt.

4, Shcw_ that
Hxy= max x(t)

J= [a, b] .:,
f2(x) = min x (1) '

define functiohals on Cla, b]. Are they linear? Bounded?

5. Show that on any sequence space X we can define a linear functionali f
by setting f(x)= &, (n fixed), where x = (). Is f bounded if X =1?

6. (Space C'[a, b]) The space C'[a, b]or C'[a, b]is the normed space of all :
. contmuously differentiable functlons on J =[a, b] with.norm deﬁned by i

[P

o o _ lell—max Ix(t)l-!-max |x'(t)| ’
1 N teJ.

Show that the axioms of a norm are satlsﬁed Show that f(x)=x'(c), .
¢ =(a+b)/2, defines a bounded linear functional on C'la, b]. Show
that f.is not bounded, con31dered as a functional on the subspace of
Cla, b] which consists of all continuously dlﬁerentlable functions.

7. If f is a bounded lmea_r functional on a complex normed space is f
bounded? Linear? (The bar denotes the complex conjugate.)

8. (Null space) The null space N(M*) of a set M* < X™ is defined to be

the set of all x € X such that f(x)=0 for all fe M*. Show that N(M*) is -
a vector space. '

9. Let f#0 be any linear functlonal on a vector space X and Xo any ﬁxed
element of X —N(f), where N () is the null space of f. Show that. any
x€Xhasa unique representation x = ax,+y, where ye N 0.

10. Show that in Prob. 9, two elements x,, x,€ X belong to the,same :

element of the quotient space X/N(f) if and only if f(x,) = f(x;); show
that codim N(f) = 1. (Cf. Sec. 2.1, Prob. 14.)

11. Show that two linear functionals f, #0 and f,#0 which are defined on
- the same vector space and have the same null space are proportlonal ’
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12. (Hyperplane) If Y'is a subspace of a vector space X and codim Y=1
(cf. Sec. 2.1, Prob. 14), then every element of X/Y is .called a
hyperplane parallel to Y. Show that for any linear funictional f#0 on X,

" < ¢he set Hy={xe X |f(x)=1}is a hyperplane parallel to the null space.

N of f.

13. If Y is a subspace of a vector space X and f is a linear functional on X

such that f(Y) is not the whole scalar field of X, show that f(y)=0 for

all ye Y.

14. Show that the norm |f|| of a  bounded linear functional f#0 on a

normed space X oan be interp;eted geometrically as the recip-
rocal of the distance d=inf{lx||f(x)=1} of the hyperplane
H ={xeX|f(x)=1} from the orgin. .

15. (Half space) Let f#0 be a bounded linear functional on a ;eal
normed space X. Then for any scalar ¢ we have a hyperplane
H,={xe X |f(x)=c}, and H, determines the two half spaces

Xa={x|f)sSd and  X,={x|f(x)=c}..

Show that the closed unit ball lies in X, where ¢ = ||f|, but for no & >0,
the half space X, with ¢ =||f||- ¢ contains that ball.

2.9 'Linear Operators and Funectionals on Finite
Dimensional Spaces

Finite dimensional vector spaces are simpler than infinite dimensional
ones, and it is natural to ask what simplification this entails with
respect to linear: operators and functionals defined:-on such a space.
This is the question "to.be'consi’dergad, and the answer will clarify the
role of -(finite) matrices in connection with linear operators as well as
the structure of the algebraic dual X* (Sec. 2.8) of a finite dimensional
vector space X, _ o '

Linear operators on finite dimensional vector spaces can be rep-
resented in terms of matrices, as explained below. In this way, matrices

become -the most important tools for studying linear operators in the

finite dimensional case. In this connection we sh_ould also remember
Theqrem 2.7-8 to understand the full significance of our present
consideration. The details are as follows.
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Let X and Y be finite dimensional vector spaces over the sam, %
field and T: X——Y a linear operator. We choose a basj &
E={e;,-: -, e.}for X andabasis B={b,, .- -, b} for Y, with the vector; &
arranged in a definite order which we keep fixed. Then every x € X hag &
a unique representation o

(D x=&e + - +&en.

Since T i1s linear, x has the image

2 . y=Tx= T(k; gkek); .;—:1 & Tex.

Since the representation (13 is unique, we have our first result:

T is uniquely determined if the images yi. = Te, of the n basis ve: oy @
e, ', e, are prescribed. :

Since y and yi = Te,. are in Y, they have unique representations of b
the form ' :

(a) ” y= Zl ys
=

(b)

(3)

r
Tew = ), Tach;.
i=1

Substitution into (2) gives

r

y= Z nib = kZ1 &Te = kZ1 &ic ; Tircbj = Z ( Z 7'ik§k) bi

j=1 i=1 k=1
Since the b;’s form a linearly independent set, the coefficients of zack. i; 3
on the left and on the right must be the same, that is, 4
n ) %
(4) m= 2, T j=1,--,r |
k=1
This yields our next result: .

The image y=Tx = }, nib; of x = Y, &ex can be obtained from {4).
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Note the unusual' position of the summation index Jj of 7 in (3b),
which -is necessary in order to arrive at the usual position of the
nmmationindexin (4).

" The coefficients in' (4) form a matrix

TEzlzh=' (7))

with r rows and n columns. If a bas'i,s_. E for X and a basis B for Y are
given, with the elements of E and B arranged in some definite order
(which is arbitrary but fixed), then the matrix Try is uniquely deter-
mined by the linear operator T. We say that the matrix Ter represents
the operator T with respect to those bases.

By introducing the column vectors & =(&) and y =(n;) we can
write (4) in matrix notation:

(4" Y = Tgpk.
Similarly; (3b) can also be written in matrix notation

(3b) Te =Tgg"b

where Te is the column vector with Ccomponents Te,, - - -, Te, (which
are themselves vectors) and b is the column vector with components
by, -+, b, and we have to use the transpose Tgg' of Tes because -in
(3b) we sum over J,» which is the first subscript, whereas in (4) we sum
over k, which is the second subscript. : .

Our consideration shows that a linear operator T determines a
unige matrix representing T with respect to a given basis for X and a
given basis for Y, where the vectors of each of the bases are assumed
to be arranged in a fixed order. Conversely, any matrix with r rows and
n columns determines a linear operator which it represents with
respect to given bases for X and Y. (CE. also 2.6-8 and 2.7-7.)

Let us now turn to linear functionals on X, where dim X = n and
leg, -+, e} is a basis for X, as before. These functionals constitute the
algebraic dual space X™* of X, as we know from the previous section.

or every such functional f and every x =Y £e; € X we have

(S0 =A% ge)= § e = ¥ 5o,

i=1

[N

(S
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" . linear furictional on X by (5). In particular, let us take the n-tuples
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where
(Sb) - «; =f(ej) B I | : j =-1,‘ cee :‘._

and f is uniquely determined by its values «; at the n basis vectors Of.'

Conversely, every n-tlip.le of scalars a,, -, a, determines a

a, 0, 0, --- o0 0)
©, 1, 0, .- 0, 0)
(0, 0, 0, S o, 1).

By (5) thlS glves n functlonals whlch we denote by fi, - - f,,, thh
values - .

0 ifj*k
(6) fr(€) =8 =1
1. if j=k;

that is, fi has the value 1 at the kth basis vector and O at the n— 1 I
other basis vectors. 8 is called the Kronecker delta. {fi,- -, fa} i is 4
called the dual basis of the basis {e;, - - - ,_.} for X. This is Justlﬁed by :

the following theorem. i

2.9-1 Theorem (Dimension of X* ) '_:Let X be an n-dimensional vec':tor{:%
space and E={e,, - - -, €.} a basis for X. Then F={f,,- - -, f.} given by
(6) is a basis for the algebraic dual X* of X, and dim X*=dim X=n. '

Proof. F is a linearly independent set since
7 Y Bufix)=0 (xeX);
k=1 ; : : ;
with x = ¢; gives

kZ Brfi(e;) = kg.l Bidiic = B =0,
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so that all the B.’s in (7) Aare:' zero. We show that every fe X* can be
represented ‘as a linear combination of the elements of F in a uniqie
way. we write f(ej) = a; as in (Sb). By (Sa), N

.-fm:§§%
: (}=
for every x € X. On the other hand, by (6) we obtain

i) =filter+- - +ge)=¢.

Together,

1®=F e,

Hence the unique representation of the arbitrary linear functional f on
X in terms of the functionals f,, - - - f. is

f=aifit - taf., ' ‘I

To prepare for an interesting appiication of this theorem, we first
prove the following lemma. (A similar lemma for arbitrary normed
spaces will be given later, in 4.3-4.) :

2.9-2 Lemma (Zero vector). Let X be a finite dfmensional vector space.
If xo€ X has the property that f(x0)=0 for all fe X*, then xo= 0.

Proof. Let{e;,- - -, e,} be a basis for X and xo=3 &ye;. Then 5)
becomes ‘

Fx0)= 3. o

By assumption this is zero for every fe X™, that is, for every choice of .
%, ", a,. Hence all &, must be zero. § -

Using this lemma, we can now obtain

2.9-3 .'l?’l_igor-._em (Algebraic reﬂexivity). A finite dimensional vector
*Pace is algebraically reflexive. '
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Proof. The canonical mapping C: X —> X** considered in the

previous section is linear. Cxo=0 means that for all fe X* w. #

have

(Cxo)(f) =g, ()= f (x0) =0,

by the definition of C ‘This implies x,=0 by Lem ma 2.9-2. Hence

from Theorem 2.6-10 it follows that the mapping C has an inverse
C™: R(C)—>X, where A(C) is the range of C. We also have
dim R(C)=dim X by the same theorem. Now by Theorem 2.9-1,

dim X** = dim X* =dim X

Together, dim ®(C) =dim X**. Heérice R(C) = X** because R(C) is a
vector space (cf. 2.6-9) and a proper subspace of X** has dimension
less than dim X**, by Theorem 2.1-8. By the definition, this proves
algebraic reflexivity. 1

"Problems

1. Determine the null space. of the operator T: R>—— R? represented - &

by

['1 32]
-2 1 o) -

2. Let T: R>——>R’ be defined by (¢, 'fz, &)— (&, &, -& —§&,). Find
[ ] :

@t(T), N(T) and a matrix which represents T.
3. Find the dual basis of the basis {(1,0,0), (0, 1, 0), (0, 0, 1)} for R,

4. Let {f,, f2, f>} be the dual basis of {e,, €2, €3} for R®, where e, =(1, 1
ez=(1, 1: _1)3 83=(17._11 —1)' Find -fl(x)’ fZ(x)’ f3(x)’ w
x=(1,0,0). ' —

5. If f is a linear functional on an n-dimensional vector space X, wh
- dimension can the null space N(f) have?

6. Find a basis for the null space of the functional f defined _bn

f(x)=§1+§2_§3, where x=(&; &, ).

7. Same task as in Prob. 6, if f(x) = o161+ a6, + az &5, where a, # 07

i

R G T R e
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L g If 7 is aﬁ (n — 1)-dimensional. subspace of an n-dimensional veétor

space X, show that Z is the null space of a suitable linear functional f

" on X, which is uniquely determined to within a scalar multiple.

9. Let X be the vector space of all real polynomials of a real variable and

of degree less than a given n, together with the polynomial x =0
(whose degree is left undefined in the usual discussion of degree). Let
f(x)=x%(a), the value of the kth derivative (k fixed) of xeX at a
fixed a eR. Show that f is a linear functional on X,

10. Let Z be a proper subspace of an n-dimensional vector space"X, and

let xo€ X'—Z. Show that there is a linear functional f on X such that
f(xo)=1and f(x)=0 for all xe Z

11. If x and y are different vectors in a. finite dimensional vector space X,

show that there is a linear functional f on X such that f(x) f(y).

12. If f,,- - -, f, are linear functionals on an n-dimensional vector space

X, where p<n, show that .th_ere' is a vector x#0 in X such that

fix)=0,-- -, f,(x)=0. What consequences does this result have with
respect to linear equations? '

~13. (Linéar extension) Let Z be a proper subspace of an n-dimensional

vector space X, and let f be a linear functional on Z. Show that f can
be extended linearly to X, that is, there is a linear functional f on X
such that fl, = f. '

14. Let the functional f on R? be defined by f(x)=4¢& -3¢, where

x =(&, &). Regard R? as. the subspace of R® given by £ =0. Deter-
mine all linear extensions f of f from R? to R®

15. Let Z<R® be the subspace represented by £,=0 and let fon Z be

defined by f(x) =(& - &)/2. Find a linear extension f of f to R? such
that f(xo) = k (a given constant), where x,= (1, L, D.Isf unique?

2.10 Normed Spaces of Operators. Dual Space

In Sec. 2.7 we defined the concept of a bounded linear operator and
illustrated it by basic examples which gave the reader a first impression
of the importance of these operators. In the present section our goal is
as follows. We take any two normed spaces X and Y (both real or

L
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both complex) and consider the set:
' B(X, Y)

consisting of all bounded linear-opérators from X into Y, that is, eag
such operator is defined on all of X and its'range lies in Y. We want ¢
show that'B(X, Y) canitself be made into a normed space.’®’
The whole matter is quite simple. First of all, B(X, Y) becomeg,
vector space if we define the sum T+ T, of twd operators T.
. Te B(X,Y) in a natural way by ‘

(Ty+ To)x = Tyx + Tox
and the product o7 of Te B(X,Y) and a scalar « by
: (aT)x_?_aTx.

Now we remember Lemma 2.7‘-2(5) and ,h'a:ve at soncé 't'h'e desire(
result: '

2.10-1 Theorem (Space .B(X, Y)). The vector -space B(X,Y) of a
bounded linear operators from a normed space X into a normed space
is itself a normed space with norm defined by . 3

2 . N B Tx o B S ar

@ ) =sup L2 2 giup .
xeX: “x" xeX .
x#0 llx||_=_1

In what case will B(X, Y) be a Banach space? This is a central{f
question, which is answered in the following theorem. It is remarkable
that the condition in the theorem does not involve X; that is, X mayo
may not be complete:

2.10-2 Theorem (Completeness). If Y is a .Banach space, then
B(X, Y) is a Banach space. R o 8 ' :

Proof. We consider an arbitrary Cauchy sequence (T,) in
B(X, Y) and show that (T;) converges to an operator Te B(X, Y)

B in B(X,Y) suggests “bounded.” Another notation for B(X, Y)is L(X,Y)
where L suggests “linear.”” Both notations are common. We use B(X, Y) throughout.
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siice: (To.) is Cauchy, for every & >0 there is an N such that_

€ach ; . ¢ : .. |
nt to ? » : . .
For all x€ X and m, 1> N we thus obtain [cf. (3) in Sec. 2.7]
T, f ITox = Toxlf=(To. - T x| =T, — Tl < el .

Now for any fixed x .and given & we may - choose & =g, 50 that
i Cauchy in Y. Since Y is complete, (T,
& Clearly, the limit ye Y depends on the
‘W operator T: X ——, Y, where y = Tx.

X)- converges, say, T,x —sy.
choice of x € X, This defines an’
The operator T is linear since -

B lim T, (ax + 8z) = lim (aT,.x+ BT,.z)= a lim T.x+ B lim T,z.

red :

+ We p’r'cf)\(e‘-thai T is bounded and ‘T, — T, that'is, || T, - T||—o0.
Siace (2) holds for every’

m—>®. Using the. continuj

for every n> N and all x X

m>N and T,x —> Tx, we may let
ty of the norm, we ‘then obtain from 2)

| O 1T Tl =T fim Tonl= tin [Ty 7] = el

This'sh.o'ws_ that (T,;‘—T) with n>N s a bounded linea;ﬁ Qp-eré.;toi".

al | Since T, is bounded, T= T, —(T, - T is bounded, that is,
le ¢ TcB(X,Y). Furthermore, . if in (3) we.take the supremum over all x
R of norm 1, we obtain

IT. - Tj=e |  (n>N).
- f Henee | T, 1) — 0. 3
n -This theorem has an important consequence with respect to the
I

dual space X of X, which is defined as follows.

2103 Deﬁﬁiﬁon'(D“al space X').

_ Let X be a normed space. Then
he set of g bounded linear functio

nals on X constitutes a normed

& [[xl| < . Then from (2) we have IT.x - T,.x] < £ and see. that (T,x)is
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space with norm 'd_eﬁned by

@ | 17l = sup L2 ",]‘ "" = sup If(x)

x #=0 lell l

[cf. (2) in Sec. 2.8] which is called the dual space'! of X and is de -;ll;.-__
by X'. 1 ; i

Since a linear functional on X maps X into R or C (the . -atar .
of X), and since R or C, taken with the usual metric, is complete, wa
see that X" is B(X, Y) with the complete space Y=R os . -ien
Theorem 2. 10 2 is applicable and unphes the basic.

.10-4 Theorem (Dual space). The dual space X' of a noretzd spa
Xisa Banach space. (whether or not X is).

It iIs.a fundamental prmcnple of functlonal analysns that investig
tions of spaces are often combined with those of the dual spaces, R

connection the concept of an isomorphism will be helpful in unde
. standing the present discussion. Remembering our consideration
Sec. 2.8, we give the following definition.

An isomorphism of a normed space X onto a normed space X is
bl_]ectlve linear operator T: X —— X which presgrves the normn, thaf]
.13 for all xe X,

1Tl = x|

(Hence T is isometric.) X is then called isomorphic with X, and X { and!

view, X and X are then identical, the isomoi‘phism merely amounting
to renaming of the elements (attachmg a “tag” T to each point). '

Our first example shows that the dual space of R" is 1som0rph1q
with R"; we express this more briefly by saymé that the dual space of

R" is R" similarly for the other examples. b
f .

'! Other terms are dual, adjoint space and conjugate space. Remember from 5ec. ngw
that the algebraic dual space X* of X is the vector space of all linear functionals on X
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Examples _
2.10-5 .Space R". The dual space of l}"'is R"

Proof. We have R™=R"* by Theorem 2.7-8, and every fER"*
has a representation (5), Sec. 2.9: A

f) =X bon. = fle)
(sum from 1 to n). By the Cauchy-Schwarz inequality (Sec. 1.2),

s Tlgnl= (T &) (X v ) =) (z v)"

Taking the supremum over all x of norm 1 we obtain .

In=(Zw)"

However, since for-x = (y,,- - - , v,) equality is achieved in the Caui}}'ly-
Schwarz inequality, we must in fact have ' :

=3, »)" o

k=1

This. proves that the norm of f is the Euclidean norm, and ||f|| =||c||,
where ¢ =(y.)eR™ Hence the mapping of R™ onto R" defined by

f— c=(wn), v = f(&), is norm preserving and, since it is linear and
bijective, it is an isomorphism. I

2.10-6 Space I'. The dual space of I"is I,
Proof. A Schauder basis (Sec. 2.3) for 1" is (e), where e, =(8;)

has 1 in the kth place and zeros otherwise. Then every xe!' has a
unique representation

(5) - X = i §kek- .
k=1 i B

We ' consider any fel, where I' is the dual space of I'. Since f is
linear and bounded,

(6) fx)= kil S Yic Yie = flex)

—

—

(e B9
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where the numbers Ve =

el =1 f(ex) are uniquely’ determined by f
éll=1 and _ 3

D nl=lfeolsllal -, sup |||

Hence (y)el”.

On the other. hand, for eve

sponding bounded linear functio
I' by R

ry b = (Bk)Ae leo we can Obtam a correl ‘I
nal g on . In fact, we may define ¢ op .

g(x) = Z &L
k=1

where x = (g&)e . Then_ g is linear, and boundedness follows from

8@I= Llsbil=sup 161 T 16l =l sup

(sum from 1 to »). Hence gelv.
We finally show that the

norm of f is the norm on the space * %
From (6) we have < : :

7091= | ten < sup 1 S = e oy
I o i j
Taking the supremum over all x of norm l;lwc s"e.:e that

lIf 1= sup [].
J

From this and (7),

(8) Ifll=sup |1,

whichisthe normon I”. Hence this formula can be written IFll = llc]le, where H
c=(y)el”. It shows that the bijective linear mapping of " onto |*
defined by fr—c = (v;) is an isomorphism. 1 i

2.10-7 Space I°. The dual space of I? is 19;

here, 1 <p <+o and q is the
conjugate of p, that is, 1/ ptllg=1. .

S e onon it
e W PR R S

il




“orre-
g on

e I”.

Iere

the _

y 17k

Proof. A Schauder basis for I js (ex), ,-whqre ex 7 (8yy) as in the
preceding example. Then every x € I” has a unique representation

o) - x= ) ba

We consider any fe I”’, where I*’ is the dual space of [ Since f is

linear and.bounded, -

(.10') f(x) = k§1 fk'Y-k Y = fex).

Let g be the conjugate of p (cf. 1.2-3) and consider x, = (&™) with |

(11) §(n) . {I'Yk'lq/‘}’k' 2 if k=n-and #0,.
o Sk T ' . - _ |
| 0o .'iffi>-n:or Y =0

By substituting this into (10) we obtain

Fe)= 2 &%= ), |nlo
k=1 k=1
We also have, using (11) and (q— Dp=gq,
1/p
fen) S sl =11 et
=W(E o)
. - 1/p =
=171 Z 1wl -
(sum from 1 to n). Together, |
. ’ _\1l/p
o= Z nl SUI(E wel)
Dividing by the last factor and using 1-1/p=1/q, we .gét

5(2’1 lwi")uq =|| fu

"\1-1/p

(£ )
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- Siﬁce n is arbitrary, letting n — o, we obtain
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(12) R (Z}l kal‘?)mfgnfu.“

Hence () € 14 i

- Conversely, for any b=(8,)cl? we can get a con‘espondmg
bounded linear functional g on I°. In fact, we may define g on I° by i\
setting

g(x)= ; &Bi

where x=(&)€ I°. Then g is lmear and boundedness follows from the
Holder inequality (10), Sec. 1.2. Hence geI?'.

We finally prove that the norm of f is the norm on the space 18
From (10) and the Holder inequality we have 3

feol=12 §k‘Yk|<(Z|§k|p) (Zl‘)’qu)
=1l (Z k)™

(sum from 1 to «); hence by taking the supremum over all x of norm 1
we obtain ;

= (Z k)

From (12) we see that the equality sign must hold, that is,

13) 1= %, wle)™

This can be written ||f]|=|i¢|l;, where ¢ =(7k)e 1 _and ‘Yk=f(ek). The

isomorphism. B

What is the significance of these and similar exainples? In applica-
tions it is frequently quite useful to know the general form of bounded
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linear functionals on spaces of practical importance, and many spaces’

have been investigated in that respect. Our examples give general
representations of bounded linear functionals on R", I* and with

p>1. The space Cla, b] will be considered later, in Sec. 4.4, since this

will require additional tools (in particular the so-called Hahn-Banach
theorem). , . .

Furthermore, remembering the discussion of the second algebraic
dual space X™*'in Sec. 2.8, we may ask whether it is’worthwhile to
consider X" = (X", the second dual space of X. The answer is in the
affirmative, but we have to postpone this discussion until Sec. 4.6
where we develop suitable tools for obtaining substantial results in that
direction. At present let us turn to matters which are somewhat

“simpler, namely, to inner product and Hilbert spaces. We shall see that
these are special normed spaces which are of great importance in
applications.

Problemis

1. What is the zero element of the vector space B(X, Y)" The inverse of a
TeB(X,Y) in the sense of Def. 2.1-19 -

2. The operators and functionals considered in the text are defined on the
entire space X. Show that without that assumption, in the case of
functionals we still have the follbwjng theorem. If f and g are bounded
linear functionals with domains in a normed space X, then for any
nonzero scalars « and 8 the linear combination 4 = aof +Bg is a
bounded linear functional with domain @(h) = a(f) Na(g).

3. Extend the theorem in Prob. 2 to bounded linear operators T,and T,.

4. Let X and Y be normed spaces and T,: X—> Y (n=1, 2,++°)
bounded linear operators. Show that convergence T, — T implies

that for every ¢ >0 there is an N such that for all n > N and all x in any
given closed ball we have | T.x — Tx||<e.

S. Show that 2.8-5 is in agreement with 2.10-5.

4

6. If X is the space of ordered n-tuples of real numbers and |[x|| = max ||
1
where x=(g,. - -
Space X'?

> &), what is the corresponding norm on the dual

What conclusion can we draw from 2.10-6 with respect to the space X
of all ordered n-tuples of real numbers? '

N, -

%

-

(R
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8. Show that the dual space of the space ¢, is I (Cf. Prob.1 inSec. 2.3)

9. Show that a linear -functional f on a vector 'space, X is uniquely:
determmed by its values on a Hamel basis for X. (Cf. Sec. 2.1.)

10. Let X and Y;é {0} be normed spaces, where dim X = oo, ‘Show  that™
there is. at least one unbounded linear operator T: X —> Y. (Use a
Hamel basis. )

11. If X is.a normed ' space and dim X = o, show that the dual’ space X"is
' not identical with ‘the algebraic dual space X*. =

12. (Compl'eteness) The examples in the text can be used to::prove
completeness of certain spaces. How? For what spaces?

13. (Anmnihilator) Let M# J be any subset of a normed space X. The
annihilator M“ of M is defined to be the set of all bounded linear
functionals on X which are zero everywhere on M. Thus M” is a subset
.of the dual space X' of X. Show that M is a vector subspace of X' and
is closed. What are X* and {0}"?

14. If M is an m-dimensional subspace of an n-dimensional normed space
X, show that M* is an (n —m)-dimensional subspace of X'. Formulate
this as a theorem about solutions of a system of linear equatlons

15:; Let M={Q1,0, -1),(1, -1, 0), (0, 1, —1)}<R>. Find a basis for M°.
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