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Hilbert Sﬁace

In this chapter, we study a special Banach space which possesses an addi-
tional structure known as the inner product. This enables us to generalize
several geometric concepts—in particular, the concepts of length and angle
of Buclidean spaces to infinite-dimensional spaces. The well-known paral-
lelogram law and several other geometric relations of the plane are proved
for this special class of Banach spaces which is known as the Hilbert space.
The concept of orthogonality in such spaces leads to the celebrated projec-
fion theorem’)and theory of Fourier series generalizing several classical
results concerning the trigonometric Fourier series. The additional structure
has important implications, such as every real Hilbert space is isometrically
isomorphic to its dual and an arbitrary Hilbert space is reflexive. Besides
these results;, the Hilbert space exhibits some interesting properties of linear
operators which are of vital importance for the study of certain systems
occurring in physics and engineering. In the first five sections, we shall dis-
cuss the results mentioned above while the last section will be devoted to
the study of bilinear forms and the Lax-Milgram lemma which are topics
of current interest.

2.1 BASIC DEFINITION AND PROPERTIES
2.1.1 Definitions, Examples and Properties of Inner-product Space

Definition 2.1 Let X be a vector space over the field of real or complex
numbers. A mapping, denoted by (., . >, defined on X'x X into the under-
lying field is called the inner product of any two elements x and y of X if
the following conditions are satisfied. ' :

Lo x4, yD=Cx y>+{x, D

2. {ax, y>=al x, y >, « belongs to the underlying field
3. KXy =%

4. {x,x>=20, % x&X;and {x, x >=0iff x=0.
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Hilbert Spaces 83

- If the inner product (., .»is defined for every pair of elements (x, y)
=X x X, then the yector space X together with the inner product (., .5 is
__called an_inner-product space OT pre-Hilbert space usually denoted by

x, o)

Remark 2.1 1.{x, ¥ denotes the inner product of two vectors x and y
=X. Some authors use the symbol . /. > or (.,.) for the inner product.
2. {x, y > denotes conjugate of the number { x, y ». Therefore, if it is

real, then {x, y > ={x, y >={) X,

3. In view of condition (3), {x, x> must be real. (For x=y in (3), we
have { x, x >=< x, x ). We know that a@lé‘ﬁﬁﬁbﬁ? is real iff z=2.",
Therefore, the number { x, x > must be real.) T EE—
_ 4, The conditions (1) and (2) imply that the function ., . > is linear in
‘the first variable x. It is easy to see that (., . > is also linear in the second |
variable y if X is a real vector space. In fact.

@) (x, p+y D=Cx ¥ O+{X YD ¥ X, 5 YV EX

() {x, By >=B{x,y> ¥ % yeX and B belonging to the underlying

field.

Verification of (a). (%, y+V'> ={y+7,x by condition (3) of Definition
2.1. By condition (1), {p+'s X>=Cp x>+ (¥ x> and s0{ %,y +y'D
=y x>y, x>={y, x>+, x ) by the property of the conjugate of
the complex numbers. Again by condition (3), { y,'x )={x, y> and
<yl’ x>=<x= yl>'

Therefore, { x, y+y'>=<X,Y>+<x, YD

Verification of (b). {x, By =< By, x, by condition (3) but {By, x>
=B < y, x > by condition (2). Therefore, { x, By > = BLy, x> =By, x>,
= B<{x, y >, using the properties of conjugate numbers and condition (3).
(For properties of conjugate numbers, see Appendix D.) o

5. Using the first and second conditions of the inner product, (a)and (b)

of the preceding remark, it can be seen that: .
-”ﬁ l 3z -'-I-| Irmyvj/ ‘} ! ; ot a ::/f" e
Y wxe, 3 Byid= B N aBr X DI e T T
Kke=I =1 fe==] =] Ve W AP.(‘.__).J“._-_'_Q_-J’ AN s et
[l {: .7""‘"';7‘ s > F“ e ) I —:--4:"" .L:
. o e O i
6. {x,0>=0, ¥ x&X. o ey ? \Go b 22 s

Veriﬁcation of (6). {x, 0>=0, x>=<0l+0,-x>‘=< 0, x>.-|-< 0, x>
={x, 0>4+{x, 0>=2¢x, 0. If {x, 0> # 0, then 1=2 (an absurdity).

Sodx, 0>=0 % x&X.
7. If, for a given element yEX, {x, y y=0 + xeX, then y=0.x, p) -
=0 is valid for x =, i.e., { , y »=0, which implies that y=0.) . _

\""¢ 8. The inner product is a continuous fuittioil With respect to the
, ‘induced by it. (For the proof, see Example 2.25.);

At D] S ot
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EXAMPLE 217 k2% un inner product space with the inner product,

< x ) J’_> sX rJ’J +X2)2 -

where _ X=X X)) ER2

y=01, y2)ER?
EXAMPLIE 2.2 73’3, /=1 is an inner product Space with the inner product,
| | .<>;,Y>= [)f; N
where X=(x), xa, ., .., Xp)ER?
= e, Yn)E RN

EXAMPLE 2.3 The vector space C[(:(, b] of conti‘rj'iioiis functions defined on
[a, b] is an inner-product space with the inner prbd_uct: .

./ g >=f: Jx) g_(?c_) dx, Whereﬁ g&ECla, b].

¢ b .ﬁ' ; . o
2. </, g>=f S() g(O)w(t) dr, whefes S, §€Cla, b] and w(r)=0 and
belongs to Cla, b]. . | ' |
For w(r)=1, we get the inner product of (1). w(z) is called a weight
JSunction, ' o W b :

ExaMPLE 2.4 12={x={x,,}/ Y lx2< oo} is an inner product space
n=\ -

with the inner product < x; y‘>== Y xig
i?-il

where x={x}e/
y={y&h e
We call / real if the sequences {x,} are real.

B . 'l) i , )
EXAMPLE 2.5 L,={All Lebesgue ifitegrable functions (real or complex
value) over (a, b)/| f [?is also Lebesgue ‘integrable over (@, b)} is an ‘inner-

: b
product space with the inner product { £, g>=f /& dx where f, g<

Lz(d, l)) . - .

NoTE For the details of spaces Cla, b], b, Li(a, b) one may. :see Appendix
D. The verifications of these examples are given in the solved examples of
this chapter. It will be seen in Sec, 2. 1.3 that L, and /,, p # 2, are not inner-
product spaces. : - | '

Remark 2.2 1. An inner-product space will be called finite dimensional if
the underlying vector space is. finite dimensional. Sometimes a finite-dimen-
sional inner-product space over the field of -complex numbers is called a
Hermitian space or unitar spacel A finite-dimensional inner-product space

P g e - -\r.--—-.—n.._..--.--—_-*- i myasa T, __-"———__—_-—
over the field"6F Teal numbers js called a; Euclidean space): o3\ \ CS R
N e . S, AR i - -

- B iowma e e - ~
N Oy NPACE FRUEL IS
(N‘;:‘\\‘) q\‘ee-) N P §
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2. Unless explicitly mentioned all abstract Hilbert spaces are defined over
| the field of complex numbers

j"]gga; eri2.1 " (Cauchy-Schwartz-Bunyakowski inequality). For all x, y
belonvlna to an inner-product space X, we have
» | <x,pDP <t x>0 yD> oY f<¥14\ g <L/r} s
. c,_‘{ _,() <\J \é>
2o proof If p=0, then {x, y >=0,and {y, y >=0 by Remark 2 1(6) Thcrc-

. fore, Eq. 2.1 is satisfied as both sides are zero.

: N .
“Let y # 0, then {y, y> # 0. Let A =§-}‘E’—Lﬂ>’ Then we have

1<x, 2212 _<x, y><x y)
$ED <y

=A{x, y y=A<{yp, x>, by condition (4) of

Definition 2.1
But we can write A { p, x >=2 {x, y> by the same condition.
Thus,
a 2 2 :
LE22L A nad=idmyd=at >y @2
N2 Ve
By using conditions (1) and (2) of Definition 2.1 and Remark 2.1 (4) (a)
and (b), we have
0 < x=Ap, x=Ap D= x, xD+{x, =D+ = Ay, x>+ =2y, —/\y>
"‘<x -x> A<x7y> A <.V’ A'>+l’\ l2'<.y: J’> (23)
By Eqgs 2.2 and 2.3, we obtain

[<xp>P_|<x, y/>’m [<x pDP

X, x >— :
STy s ¢ Kuir
—.‘J‘/N. - 2 :'h> 1'4-‘ 5‘ "‘\K\- l{\;\/ \'J“ \-'1 \:-' N \. ~(*
or 0 < ( x, X > l<<J; J;;[ g_m:l::_r(‘ \?‘-:{'-)“r--,‘_,.‘\ cl L
" -
or [ <y << x>y > N (2.4)
This is the desired inequality. <\l/

‘.ﬂ v !

¢ Theorem 2.2 Every, nmer-p;oduct space X is a 110rn1chduc with respeul
to the norm ||x||-|<,x X2 v xe X = ::}; Ky e o
P (K_._; .;‘. .-I>_._\,~“~A\.\\l

it

Pl X 1) o

Proof Since the inner-product space X is a vector space, by definition, it is
only required to verify axioms of the norm (Definition I.1).

Lffx[Z0+ xand[[x]|=0iff x=0. [[x{|=[{x, xD]'% {x,x>=0
and {x, x>=0 iff x=0 by condition (4) of the definition of the inner
_ product Therefore, (1) is satisfied.

exli=]e| | x]l ¥ x& X and « real or complex. We hav?ﬁ'a'x = <
[( ax, ax ) 2=[x&{x, x D]V2 by condition (2) of Definition 2.I and

PGP,
P ST EER AR
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2ERD I

Remark 2.1 (4) (b). Since ez=|« |2, we have { ax | =]

[ x, x 1= | Fxi.

Z

B xS Ex Y M X PEX We NaVe, - o e e

Fayit=dx Tty x4y
=0 x 24+Cx p O 4x 2+ 0>
=Cx% X >+2Re (X y>+<y, 1D
by Definition 2.1, and Appendix D. By the Cauchy-Schwartz-Bunyakowski
inequality, Re {x, y > << | x, y Dl < Kx, x Dy, yote, Therefore, we
have
ey 2 < oy x D4 2(Cx, a0y y D)4y p S
=[x ¥R+, y D]
or k2l < [0 X D[y, D] = x4+
bt < x o+
This proves that || x =[x, x D12 is a norm on X and (A0 is a
normed space.

Remark 2.3 1. In view of Th. 2.2, Cauchy-Schwartz-Bunyakowski
inequality is written as [ <x pD< x| Iyi.

2. In the Cauchy-Schwartz-Buhyakowski inequality, equality holds, i.e.
[<x pD|= x| |yl iff x and y are linearly dependent.
Verification  Suppose | {x!y>|=|x ||yl and x 0, y £ 0. (If either
X=0 or y=0then x and y are linearly dependent and the desired result
follows.)

This implies that { x, p > s 0-and < y, Yo #£0, IfF A= g—;—’—j:-;: then A -2 Q
NS
and
" )
(x=W x =Wy = Cx, p =] EJ\- f} >>_‘] [see (Eqs 2.3 and (2.4)]
- |2 12
= x ”2_” )vllll ”g’ll =0
e, I
This implies by Definition (2.1) (4) that x~\p=0. ' L»M L bl
Hence, x and y are linearly dependent. VIR <

Converscly, if x and y are linearly dependent, we can write }v= /\j).m’l“h'is
implies that g
[<xr o 1=y, p >
=[A 1<y v (by Definition 2.1 (2))
=IALy I=(1Aliy DIy by Th 2.2
=iy
= x{ il

Wy

*
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Remark 2.4 1. The norm I xfi=]<{x, x> [N2is said to be the norm in-
duced by an inner product. :

2. Since every inner-product space is a normed space, all the definitions
“givenin Ch. 1 can be translated in an inner-product space with respect to
the norm induced by an inner product. For example, a sequence {xn} In an
inner-product space X is called a Cauchy sequence if for ¢ > 0, there exists
N, such that || x, —Xm | =[{ Xn= Xy Xu—Xm PP < € for n and m > N, i.e.
lim { Xn— Xm, Xn=%m > =0.

Hn—>00
ni=>0
. . T . P _'\| L P
2.1.2 Hilbert Spacc 'S o7 T SIrR Vsl SN0 IR N
o 7;::4)‘2\:““ * n.__‘).‘._ e (] \‘:i . ‘)-‘ :nt: _,\j" :'A“-:' 2 31;’1"' it

Definition 2.2 An inner-product space X is called a Hilbert spar;"e if the 7 =2 .

normed space induced by the inner product is a Banach spé,ce (complete
normed space). That is every Cauchy sequence {x,}EX with respect to the
norm induced by the inner product is convergent with respect to this norm,

EXAMPLE 2.6 . 1 Rn, [» and L»(a-b) are Hilbert spaces.

2. Cla, b] and P[a, b] are inner-product spaces but not Hilbert spaces.
NoTe For P[0, 1], see Appendix D (Definition 9) we define an inner pro-
duct on P[0, 1] as follows. .

1
re> | s
where- f, g€ P[0, 1].
EXAMPLE 2.7 Let Y= { f]f is absolutely continuous on'(4, b) with f and.

;—g belonging to La(a, b) and f(a)=0=f (b)}

Yis a deuse subspace of La(a, b).
Y is a Hilbert space with respect to the following inner product.

Chrede=Chigy S %

where ¢ ., . D is the inner product of Lz (a, b).

BExAMPLE 2.8 Let Q be an open subset of R3 and Cy’ (), be the infinitely

differentiable complex valued functions with compact support in €. Let =07~

(e B L,
<ﬂg>‘fn(fg+axl axl'l'axz axz'*‘axs gx—a dxy dx, dx;

Then ¢ ., . is an inner product on C¢’(Q). This inner product induces
(2 _
the norm Il fll= ( f () FR+Lpf B dxy dxs dx;)) . However, Cy (£2)is not
Q

L

a Hilbert space.
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Remark 2.5 1. Historically / is the first example of Hilber( space which
was discovered by the, celebrated German mathematiciar David Hilbert
around 19]0. Although the abstract axiomatization (Definition 2.1, 2.2) was
given by J. von Neumann in 1927, the abstract space i itself calledHilbert——:
e _space..ih-'v-:'éw--bf'-his--f‘un'dam?fhtal contribution cdncerning Orerators on such '
o spaces. _ .
2. In the early ‘stages of the developmeiit of the Hilbert space theory,

our present day Hilbert space (Definition 2.2) was assumed to satisfy an

additional condition, viz. that the inner-product space is also separable, That

is, up to 1930, a Hilbert Space was a separable complete inner-pr&ﬁ&?ﬁéﬁéé?é-}

e = L)

TR

“Hilbert space that is not separable.) | R
37 In" Example 2.28, we' shall show that every separable Hilbert space js
isometric isomorphic to /.

2.1.3 Parallelogram Law angd Charactéri’zation of Hilbert Space *
From the elementary seometry (geometry of the plane), we know that the
sums of the squares of the diagonals of a parallelogram is equal to the sum’
of the squares of its sides, The following result gives a generalization of this
result to an inner-product space. : '

.Tlmo;jen_g 2.3 (Parglle_]ogram Ia\&) For any two elem_::nt's xand y belonging
to an inner-product space, we have fow T T
IX421P +Hix=p 2 <2 xpray, e |

Proof Since X js an inner_f_-prpduct space;. we have fx+y 2= x4y,

X--p >(Th. 2.2, and lx=yp 2= x=p, x~y P _ it
By Definition 2.1 and Remark 2,] (4), we have -'

Fxtp P2 x4+ x, y >4¢ p, x >Hp >
or Bx+piP=lix P+ 5y d4¢y, XD+ p P (2.5)
Similarly, ' . '

bx=yiP=x 2y y 5y xS g (2.6) '

By adding Eqs 2.5 and 2.6, wc obtain

Xty 246 x—p F=2 i x 2.2 U EA
This is the desired result,
ST : .
'fRe»zg_gk,,g_.ﬁ\ The following example shows that the parallelogram law is not B!
valid for an arbitrary norm o 4 vector space, - D
Let X F‘\C[O, ZnJFSpat_:e of all real-valued contisi uous function gn 10, Z=).

Then, C[0, 2x] is a Banach space with the norm j; /it = | sup [/0) | However
O OGS ot = ) :0=£.-.":~<.¢27T‘ it

o
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" this norm does not satisfy the parallelogram law. For example choose
7 (1)=max (sm 7, 0) and g(t)=max (-sin 1, 0). Then .
i=Ltiglh=11f+gil=1,and|| f—gh—

~ Thus; "f"2+2 lgi2=4, and | f+gl2+lf-gl?=2
Hence, .if+gz;2+||f— gi*# 2 fIP+2] g > (
In fact, we shall prove in Th. 2,5 that if the norm of a normed space
catisfiés the parallelogram identity, the space is an inner-product space.

Theorem 2.4 - (Polarization identity) For any two elements x and y belong-
iag to an inner-product space, we have

 x, y>¥—4—{.ll x+y = x=y2+ilx+ip|2—illz-iy |2}

Proof *By Definition 2,1 and Remark 2.1 we have
lix+y||2=<x,x>+<x,y>+(y,x>+_<y, y>
~fx=yit=-{x, x>+<x> y>+<y’ x>.—<y’ yD
il x4y P=idx, x2+x y 2= xD+ip, y>
=il x—iylP=—i{x x 24X ¥ 3K x >=iy, ¥ >
By adding these four relations, we obtain

Alx+y 112—|lx yIR+illx+ip|2—ilfx—iy|P = 4<x, ¥

ot Xy >=-4—[|| Xeby P=l =y IP+ill x+ip P=ill x-iy 7]

Theorem 2.5 [Jordan-von Neumann, [935]. A normed space is an inner-
product space iff the norm of the normed space satisfies the parallelogram

law.

Theorem 2.6 A Banach space is a Hilbert space iff its norm satisfies the

raralielogram law. |} XL.,-E.T‘ S (W Aama e\t

Proof of Th. 2.5 1. Let X be an inner- product space. Than by, Th 2.3, the

\.._, t_,,__-. [ »\)L

parallelogram law is satisfied. f,;‘ml__ﬁc;\‘\ ) wh _“‘\ N
2. Conversely, suppose that Xisa normed space such that its norm |- |-
sutisfies the parallelogram law. That is, we have the relation

[ x+y P+l x=yP=21x [2+2 | y|* ¥ x, yEX.
Now, we want to show that an inner product is defined on X.
Let p(x, y_)=~71({ W x+yP=f x—y |P+ill x+iy [2=00 x—iy i
Now, we prove that p(x, ) is an inner product on X, i.e. it satisfies the
following conditions.

(&) p(x4x, y)=plx, - ) +p(x'; y;
(b) plxx, y)=ap(x, v)
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(©) o(x, 1) =p(3, x) N
(d) o(x, x) > 0, and p(x, x)=0iff x=0

Verification of (a) (a) is equivalent to B S

= _I b i P

“ FU X+ 4y Pt x+x' -y Rl xdx iy oy I+ =gy

RS
4

[lhx+y i~ x=ppetsy YRy =if x—jy ||

# gl 4y P =y gy e ¥ =iy lfl @)

In order to verify Eq. 2.7, it is sufficient to verify that the real and imagi-
nary parts of its right-hand side are respectively equal to the real and imagi-
nary parts of its left-hand. In other words, the verification of Eq. 2.7 is
equivalent to the verification of the following relations..

FX+2" 4y = v =y 2= IXAP =) x=p 2 x4 p g2

X =y2 (2.8)
and || X+x 4 iy |2~ XX =iy |P=) x4y =1l x =iy 24 x4y |2
' — Il X' =iy |2 (2.9)

Verification of Eg..2.8 By the parallelogram Jaw for the clements};—-l-x

"

X
and 5+, we have

P s a2 (24 5 ) 2 (s )i
Since | y~x =l x= ||, we have -
R S e LAY Iy+5 e (2.10)
Replacing y by ~» in Eq. 2.10, we obtain |
It =y Pty =2 xe g prag %oy @.11)

Equation 2.8 takes the following form if we put the values of || X+x'+y |2
and || x+x"~y |2 given by Eqs 2.10 and 2.11 respectively.

2]!x+i2‘l'”2+2”)/+%”2—”x—y ”2.,_’lx_l_y',2_2” x_,_%'nz

4

2= B x oy P 5 ey

=[x =y|?
] j x, 1291 x' T TR iz , . ,
> LA Rty 2TXIEEIX P X =y (212

L}

wf

*
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’ ’ . ' xl '. xl .
By the parallelogram law for the elements 5 +yand 5 We have
xl 5 xi '
| +yR+lyit=21 75 +yP+210 51 (2.13)

By changing y to —y in Eq. 2.13, we obtain
1 =y [Py P=21 5 = yP+205 1B Recall | =yi=lyID)
| i | (2.14)
Subtracting Eq. 2.14 from Eq. 2.13, we get

| ¥ 4y l2=l X —y P=21 5+ =215 = 2 P 2.15)

Equation 2.15 is equivalent to Eq. 2.12 which in turn is equivalent to Eq. 2.8.
Hence, Eq. 2.8 is verified.
Replacing y by iy in Eq. 2.8, we get 2.9. Thus,

p(x+x', y)=p(x, p)+e(x', ¥)

Verification ¢f (b) We verify the relation for different values of «.
Case (i): If =0, then p(ax, y)=p(0, y)=0 and op(x; y)=0. Hence, the
desired relation is truc. '
Case (ii): «= — 1. By (a) we have p(x +x', y)=p(x, V+ex,p). Ifx'=-x
in this relation, p(0, ) = p(x, ») +p((— 1)x, ¥) or (= 1)p(x, )= $((— x, y).
Case (ili) «=p, where p is a natural number. Then, by the principle of in-
duction, (a) gives p(px, y)=pp(X, ¥).
Case (iv): «=n, where n is integer, i.e. «= £ p.

Cases (iii) and (iv) imply that

1 p(nx, y)=np(x, y)

Case (V) “x=n/m, i.e., « is a rational number.
X n oo [x n X
W " = _— = — —_— = — —_— 5
e have p(n/mx, y)=n¢ (m , y) o mcp(m ) y) - (m e y)
by case (iv)

i n
H . g = — (
ence, P (mx, y) = (%, )
Case (vi): o is a real number. We know that every real number can be

cxpressed as the limit of a sequence of rational numbers, i.e. o =1m ¥, ¥.'s
n->0

being rational numbers.
We are required to verify that p(ax, y)=up(x, y) or p(lim ¥,x, y)=Ilim
n=>»0

H=—»<D
Yup(%,9). Since p(Ya, ¥) ="7u(X, ¥) for each n, it is sufficient to verify that
o(xx, )=lim p(¥.x, ¥). In view of (a), it is sufficient to verify that
n—>"0 .
lim p((e. - 75) x, y)=0.

H=rc0



92 Func_tiq_hal Analysis

In order to verify it, we are required to show that p(ux, Y)-=>0as ,L -0,
which is equivalent to verify that hm N wx =iyl

By the triangular mequahty of the non m, we have

| Lo | Ll = rjvf'l‘* “f-‘x_l = “‘”P-'-A‘I‘J’”(“ l”Vr"iF'ij"H

By taking the limit in this relation as n -0, we get Iyl < lim § px +y I
<yl orllml,',ux-i-y”=|'.'yﬂ o >0

Case (Vu) o=
o(ix, y)——[l/x+yll2+'lzr y” +/, ix Hy]'z—z!l ix— 1y”2

| =i *[Hx—#yh ~llx= yi” HllxtiyP=ix=ip |z

=ip(x, y)
Case (viii). o= n+im.
p((n +im)x, y)= p(nx-}—mm y)
: _~ga(nx, y)+gv(tmx y)

—ngo(x y)-!—rp(mx ») by Case (vii)
=np(x, y)+ imp(x, ) f
=(n+im)p(x, y)
=ap(x, y)

Verzjzcatwn of (c) We want to verify that p(x »)= p( s X).
We thC

e

P(J{, x) = C,onJug«tlt@ of —[Hvy+x HZ— H y—x H2+z Iy +ix 112 = y—ix|?]

[Hx+y =1l %~ sz—lHVwLIxHZ-H Iy -ix |7

——[H PP lx-y l!2+t l x+ly h ~iHlx+iy '_F_‘P{x; »)

Asfly=x|=|x~py,

—IHV+DCH~—IH(—12))’+IXH—(*Z)NZ(X i) |12
=(=O[ i | x=iypp= =i x= iy

and Hy=ixi|=i| (- DiZy—ix||=if (=i)(x+iy) 2
=il=iPlx+iy|y "

R P
Verification of'(d) ' '
PO )=l 25 21 5 o 1B

= EA e 1 z)x g

Ll

L

ORI v minin = 3w b e L

st ottt m.x_':._nmag_'fnm F= i

SEip A
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Glx PR+l 1+i2x)2—7 ] (T=0) 21 x2 17

=l i 2= 2w

. =| x |12
or , x|l =[p(x, x)]!/2
If plx, %)=0, the” [lx||=0. But | x!l=0 iff x=0. Hence, p(x; ¥)= 0 1ﬁ‘
x=0. . . A s B
This proves the theorem P30S 1h v trenf PSSl Sl Pl
B BRI

......---—-"‘

P:oofof Th. 2. 260 1. Suppose X is a Hllbert space. Then by definition, it is
a normed space. Also, by Th. 2.3, the parallelogram law is satisfied.

2. Suppose X is a Banach space such that its norm satisfies the parallelo-
gram law. Since every Banach space is a normed space, by Th, 235,

o(x, ¥) =%[H,X+y 2= x=y |2+ || x+iy[2—7 | x =iy 2] (2.16)

is an inner product on X.
Suppose {x,} is a Cauchy sequence in the inner-product space (X 50), ie.

?(xn_' Xty Xn "xm) "> 0, as, n, m —» o0 (2-17)

In view of Eqs 2.16 and 2.17, {x,} is convergent in (X, p). Hencc, (X, @) is
a Hilbert space.

Remark 2.7 1.1, (see Example 1.4 and note after it) is not a Hilbert spacc
for p#2. For this, apply Th. 2.6. g

Let x=(1,1,0,0,...)and y=(1, =1,0,...).
Then, x4+y=(2,0,0,...)and x=3=(0;2,0,...).
We have

I xif= (,Z-;,’ Xk lﬂ)lln=(11 [P+ 1 P+0404- ... +0)t»
Iyl=Q 1+ [ I=1]+ ... +0p=21r
fx+yll=(@2)]+0+ ... +0)/r=2
Ix=y =+ 20+ ... +0)1r=2
Hence, || x+y [?+|lx-y|*=8 and 2|| x[2+2| y|i2= 20237 +2%r),
If p=2, the parallelogram daw is satisfied, which implies that /%is a
Hilbert space. If p #2, the parallelooram law is not satxsﬁed Thercfore in .
view of Th. 2.8, [, p#2, is not a Hilbert space. ‘

2. In view of Remark 2.6 and Th 2 6 C[a, b] with sup norm (Exampk
(1 8) is not a Hxlbert space :—' ol "’J ) - '

_\f \'-\
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2.2 ORTHOGONAL COMPLEMENTS AND PROJECTION
THEOREM

12.2.1 Orfhbééﬂé)“_Cai;i}j.leh-l;r_l_t;ﬁ;(l Projections

Definition 2.3 1. Two vectors x and Y in an inner-product space are called
- orthogonal, denoted by x1y, if ( x, y >=0,

2. A vecter x of an inner-product space X is caljed orthogonal 6 a Hion-

gmpty subset 4 of X, denoted by xLd, if ( x, » >=0 for each ye 4.

3. Let A bea nonempty subset of an inncr-prqglyc_t space X. Then, the
set of all vectors orthogonal to 4, denoted by 4L, is called the orthogonal

complement of 4. It is clear that AL ={xeX/ x, »>=0 for each YEA).
ALL = (44)L will denote orthogonal complement of 4L,

4. Two subsets 4 and B of an inner-product space X are called orthogo-
nal denoted by 4L B if (X, p>=0 ¥ x=4 and ¥ y&EB.

_Vax>=0

© Remark 2.8 1. Since { x, y >=nx,{xy > =0 implies that <
or {y, x >=0 and vice versa. (see Appendix D 3(6).) Hence xty iff »lx,

2. In view of Remark 2.1(6), xL0 for every x belonging to an inner-pro-
duct space. By condition (4) of the definition of the inner product, 0 is the
only vector orthogonal to itsself, .

3. It is clear that {0}L =X and XL = {0}.

4. It is clear that if ALp then AN B={0}.

5. Nonzero orthogonal vectors, xj, xa, x, ..., X, of an inner-product

space are linearly independent.

’ Theorem 2.7 Let X be an inner-product space and A be its arbitrary subset.
Then the following results hold good.

1. 4L is a closed subspace of X, _

2. ANALC{0}- AN AL = {0} iff 4 is a subspace.

3. AcALL,
4. If BCA, then BLo 4L,

Proof 1. Let x, ps AL, Then, {x, z>=0vz2c4 and <y z)>=08ze4.

Since for arbitrary scalars «, B, {ax+ By, zy=a < x, zZ3+B< y, z), by

Definition 2.1, we get Cox+By, z>=0. ie., ex+BredL. So 4 is a subspace
of X. ' .

For showing that 4L is closed, let {xs}€4 and x, - .

We are required to show that y must belong to AL, :

By the definition of AL, for every x&X { x, x, >=0vn. This implies that
lim Cx, X, >=1im ¢ x,, X >=0 (Remark 2.8). Since ¢ . , . Y is a continuous
H=»20 Ny .

fu'nction,‘“(.lim Xp X >=0.

H=>)

or {y, x> =0. Hence, y= 4.

),

bt

'

ey
LA I i
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. -\ P N
) . [0 TS | -

2. If yEANAL, Lo yEA and yEdd;=p T2 2 T e

byRen1ark28 y=0, 6., ys{0}. * '~ P S
"—~"If 4 is a subspace, then 04 and 04N AL. Hence, ANAL={0}.

3. Let yE 4, but p¢4LL. Then thereexists an-element z&A-1 such that
(y, 2 >#0. Since z&44, {z,y >=0 which is a contradiction. Hence,
¥ EA-L-L .

4, Let yeAl Then { y, z >=0%z&E 4. Since every z& B is an element of
A, we have'{ y, z >=0%z&B. Hence, yEBL, and so BLD AL,

This completes the proof of the theorem.

Definition 2.4 The angle 6 between two vectors xand y of an mncr-product
space X is defined by the following relation

"s0s 0 =rib St <f— (2.18)
"’“-”,“}"\ [IX”"y[n ~ i;’;‘ﬂ_ PR BT

DLV & \_ N PR

Remark 2.9 1. By the Cauchy- Schwarzt Bunyakowskx inequality, the right-
hand side of Eq. 2.18 is always less than or equal to 1, and so the angle 6 is
well defined, 0 < 8 < =, for every x and y different from 0.

2. If X=R3, x=(xi1, X2, X3), y= (1, Y2, V3)» then

3 @

e X1y XYzt X3)3
U U= -
(x. +xs +x3)”2(y1 + 3+ y3)1/2

This is a well-known relatlon in tln ee~d1men51onal Euclidéan space.
are also called pcrpendlcular vectors
A well-known result of plane geometry is that the sum of the squares of
the base and the perpendicular in a right-angled triangle is equal to the
square of the hypotenuse, This is known as the Pythagorean theorem. Its
L mﬁmte dimensional analogue is as follows.
‘ S R

* “we have x4y P=(lx [P+ y 2 o S
Proof | x+3*P=x+y,x+y>={xx>+{»x p+{x, ¥ >+, ¥ > (by
Definition 2.1 and Remark 2.1). Since x Ly, {x, y>=0and { y, x >=0(by
Definition 2.3 and Remark 2.8). Hence, || x+y [2=]x 2+ v %

We recall (for details, see Appendix C) that an algebraic projection on a
vector space X is a linear operator P on X into itself such that P2=P. The
geometrical significance of this concept is as follows, ‘

I. An algebraic projection determines a pair of subspaces M and N such
that X=M@®N, where M ={P(x)EX/xEX} and N={xEx/P(x)=0} are
the range and null spaces of P.

2. A pair of subspaces M and N such that X'= M@N determines an algeb-
raic projection P whose range and null space are M and N.

Thus, the study of algebraic projection is equivalent to the study of pairs
of subspaces which are disjoint and span X.

- ~,f~7he(;; -em 2.8 Let X be an inne-product space and x, y&X. Then for xly, v (i
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A /Opological; Projection on a Banach space is 4 con tinuous algebraic pro-
Jection on a Banach space. Analogues of properties (1) ard (2) stated above

~ On"an arbitrary Banach space, there- may exist an algebraic projection.

However, the existence of a topological projection is not guaranteed. The

topological projection on a Hilbert space, called the orthogonal projection

or perpendicular projection or projection; has some intersstin g properties.
The existence of a topological projection on a Hilbert space is ensured by
the projection theorem proved in the next subsection,

2.2.2 Projection Theorem

Theorem 2.9 (Projection theorem ) If M is a closed subspace of a Hilbert
space X, then : ‘ R _

X e M@ ML ._ (2.19)

Remark 2.10 1. Theorem 2.9 implies that a Hilbert space is always rich in
projections. In fact, for every closed subspace Af of a Hilbert space X, there
exists a topological projection on X whose range is M and whose nul] space
is ML, o '

2. Equation 2. 19 means that every zeX ‘is.'e'xpres'siblev'un_iquely in the
form z=x+y where x&M and y& M-, Since MN ML ={0}, by Th.2.7(2)
in 6rder to prove Th. 2.9, it is sufficient to show that X = A+ 7L,

' Equation 2.19'is called the orthogonal decomposition of Hilbert space X.
3. (i) Let X=R2, Then Fig. 2.1 provides the geometric meaning of the

. orthogonal decomposition of R

H=R% XER2, x =142z, y I, 7€ ML

‘Fig. 2.1  Geometrical mea ning of the orthogonal decomposition in R®

-:li :

are true for topological proiection._,Edn.detai]ssee—Simmons‘-5°,—pp'7236?23871‘"_' 3

BT
ST

>
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- (iiy Theorem 2.9 is not valid for inner-product spaces. (see Ex. 2.12(b)).
. We require the following results in the proof of Theorem 2.9.

“Temma 2.1 Let M be a closed convex subset of a Hilbert space X" and

p=inf | x [ Then there exists xEM such that §| x| = L.
xehM o .
Lemma 2.2 Let M be a closed subspace of a Hilbert space X, let x& M and

et the distance betwéen x and M be P, i.e., P= inf[lx—ul.
ueM

Then there exists a unique vector wE M such that || x—w |=r.

Lemma 2.3 If M is a proper closed subspace of a Hilbert space X, there
exists a nonzero vector » in X such that « 1LM.

Lemma 2.4 If M and N are closed subspaces of a Hilbert space X such that
M N, the subspace : '
M+ N={x+ycsX/xeM and y_eN_} is also closed.

Remark 2.11 Lemma 2.1 is true in the following general form. Let M be
‘o closed convex subset of a Hilbert space X and for x€X, let P=

“inf || x = #||. Then there exists a unique element we M such that p=|| x—w||.
neM ’ v
w is called the projection of x on M and we write Px=w.

Proof of Lemma 2.1 Since M is a convex subset of X, it is nonempty and
ax+(1 —@)yEM, for a= 1/2and every x, yEM. By the definition of #,
there exists a sequence of vectors {x,} in M such that || x, || - p. For x=Xx,
and y =y, we have, ' '

Xn+ 2 Xot
__ﬂ_i?'.ﬁiLEM and || _%x_,,,_ | =P,
|| 0+ X || 2 2P . (2.20)

By the parallelogram law for elements Xx, and X,
- 1 o+ X 2 1) 2= 2 [12= 2 1| X [+ 21 50 |2
or . I} 20 = Xm [2=2||x, ”2+ 2] 'X,»,, =1 Xt Xm |
< 20 x, 2+ 2] xm I2—4 P2 (By Eq. 2.20)
Since || x, |2 2p2 and || Xm | —>2p2, we have || Xy~ X |2 — 2p24-2P2— 4p2
=0asn, m->co. | _
Hence, {x,} is a Cauchy sequence in M. Since M is a closed .subspace of

a Banach space X, it is complete. (See Th. 1.3.) Hence, {xa} is convergent
in M, i.e. there exists a vector X in M such that lim x, =x. Since the norm

H—>0Q

“is a continuous function, we have P=lim [| X, [ =i lim x i =[x L -
: n-yw

- H=rD

Thus, x is an element of M withthe desired property. Now, we show that
% is unique. Let x' be another element of M such that =1 x'}|. Since x,
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X' €M and M is convex, x—;x EM. By the parallelogram law for the ele-

7

X x
ments 5 and =, we have

2 S

12

7 ’." 2
15+ e T-Fk=2 i+ 2 e

A A N P T
or R i e
<AEEuxE
or 15 <o

which contradicts the definition of p, Hence, x is unique,

Proof of Lemma 2.2 The set N=x+ 7= {x-i,-v/vEM} Is a closed conye

subset of X, and p= inf 10—~ (x+0v)| is the distance of x + from the
x-tveEN .
origin ‘0’, Since — v&EM for all vE M, p=inf I x~2|l. By Lemma 2.1, there
veEN -

exists a unique vector u& N such that P=|lu|l. The vector W=Xx—u=—(y
~ x) belongs to M. [Aswe have M= V- x = {z-x/zeN:; X&EM} and M is 5
subspace, therefore, —(z—x)eM]. Thus, ||x—w I=llull=p, w js unique.
For, if wis not unique, wy, % w is a vector in M such that | X ~wq ||=p. This
implies that u; = (x — W1) is a vector in Nsuch that lagll={ x~w;|j<p. This
contradicts that ¥ js unique. Hence, .w is unique, .

Lroof of Lemma 2.3 Let x ¢ M and p = inf | X~ |, the distance from x to
veMm "

Let u=x—w y £ 0 ag P> 0. (If u=0, then X¥=w=0and | X=w | =0imp-
lies that P=0.)

Now, we show that # | M. For this, we show that for arbitrary YEM,
u, y>=0. o .

For any scalar «, we have ||y~ wpll=llx—w- ay =l x— (w+cxy) Il. Since
M is a subspace, W+ay& M whenever w, YEM. Thus, W+ eayEM implies
that || u—ayll = P=juj or e —ap (2| 12 > Oordu—~ay, U—ap>—| u |2

Cu=op, u—ay >=(y, up=alpud—5d u, Yo+aidy, y>
=HuH-°°’<u,y>-°¢<y, up+| ey, p>,
we have, _

"y d-aluydtla Py s0 (221) -

By putting « =B<u y>in Eq. 2.21, 8 being an arbitrary rea] number, we

get . _
. —2PI<u,y>lz+ﬁzl<u,y>lzllyllz20 (2.22)

ARSI R et e i e
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put a=| <%y >|2and &= yi?in Eq. 2.22, we obtain
' —2/3a+/32ab
,Ba(Bb 2) >0 real 8 (2.23)

e If we

oA If a > 0, Eq. 2. 23 is false for all sufficiently small positive 8. Hence, @ must
Y pezero, ie., a=|{u,yDPP=00r{u,y>=0y v yEM.
This gives the desired result.

Proof of Lemma 2.4 lItisa well-known result of vector spaces (see Appen-
dix E) that M+ N is a subspace of X. We show that it is closed, i.e., every
limit point of M+ belongs to it. Let z be an arbitrary limit point of M/
+ N. Then there exists a sequence {za} of points of M+ N such that z,->z.
(See Theorem C.2 of Appendix C.) M| Nimplies that M N N={0}. So, every
z,&M + N can be written uniquely in the form z,= x,+ y., where x,& M and

mEN.
By the Pythagorean theorem for elements (X — Xu) and (Y~ yn}, we have

| 2= za [|2= | (3Xm — Xn) + (Ym "}‘ﬁ) ||2 )
=|| Xm— Xn ”2+ | Yim = Pn |2 I b (224)

(It is clear that (X, — Xu) L(Vm — yn) ¥ m, A ) Since {z.} is convergent, it is
a Cauchy sequence and 5o || z, — z, [|2 = 0. In view of it, from Eq. 2.24, we
see that || Xm— X, | = 0 and || ym— ya Il =0 asm, n = co. Hence, {x,} and
{yn} are Cauchy sequences in M and N respectively. Being closed subspaces
of a complete space, M and N are also complete. Hence, {x,,} and {y.} are
convergent in M and N respectively, say Xm — xEM and yn—> YEN. x+ y
&M+ N as xeM and yEN. Then,

z=1im z,= lim (x, +Yyn) = hm X+ lim y,

n-ro h=~>cQ n-»c

—x+yEM+N

This proves that an arbitrary 11m1t pomt of M +N belongs to it and so it
is closed.

Proof of Theorem 2.9 Since M is a closed subspace of X, by Th. 2.7 (1), M+
is also a closed subspace of X. By choosing N=M<1 in Lemma 2.4, we find
that M +MJ» 1s a closed subspace of X. First, we want to show that X'=M
+ ML, Ly £ M FMD, ie., M+M* is a proper closed subspace of X.
Then by Lemma 2.3, there exists a nonzero vector # such that ulM+ ML,

This implies that { u, x+y >=0, ¥ x&M and yeM+. If we choose y=0,

then {u, x >=0 ¥ x&M, i.e., ucML. On the other hand, if we choose x=0
then {u,y>=0 % yeMLie.,, ucMLL, (Since M and M* are subspaces
this choice is possible.) Thus, ML NMLL. By Th. 2.7(2) for 4= M+, we
obtain #=0. This is a contradiction as ¥ # 0. Hence, our assumption ‘is
false and X= M+ ML, In view of Remark 2.10(2); the theorem is proved.
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Remark 2.72 Sometimes, the following statements is also added in the state-
ment of the projection theorem whose proof we shall give in Example 2,29,
“Let A1 be a closed subspace of a Hilbert space X, then M= /L1

Remark 2.13 1. Let X=Ly(~1, 1). Then X = M@ ML, ,
where M = {fELz(¥ L, D/f(=1) =f(1)¥tE(=1, 1), i.e., the space of even
' functions} ' . _

ML ={fELo(~1, DIf(~1)= ~f)¥1E€(-1, 1), ie., the space of
odd functions}. &

2. Let X'=Ly[a, b]; for c&Ela, b, let -
M={fELya, bJjf(r) =0 almost everywhere in (a. ¢)}
and  Mi={fcl)a, bj/f(t) =0 almost' éverywher¢ in (e, b)}.
Then, Y=M@®ML.

Remark 2.14 The orthogonal decomposition of a Hil bert space, i.e., Th. 2.9,
has been proved quite useful in ‘potential theory. [For details, see Taylori6o
and Weyll75,] The applications of the results concerning orthogonal decom-
position of Hilbert spaces can be found in spectral decomposition theorems
~ which deal with the representation of -Operators on Hilbert spaces. For
.. example, for a boundéd self-adjoint operators, 7, {Tx, y > is represented
by ai ordinary Riemann-Stieltjes integral. For details, see K reyszig9s,
Naylor and Sell'2!,"Taylor160, and solutions of Ex, 8.1 and 8.2,

- 2.3 ORTHONORMAL SYSTEMS AND FOURIER .
" :EXPANSION = ¢~ - |

2.3.1 Definitions, Examples énd Gram-Schmidt Orthogonalization
Process

4 beﬁnit."bn 2.5 LetXbea H:il_bért/'spzic:e and {dn} be '1 seq_uénce of elemén_ts
- of X. Then: T L L .Y
I, {f,ﬁ,,} is called an orthonormal system in the Hilbert space X if
v K Py hn >=0 if m#n
NI O 1. if m=n.

2. For any fex, o:,,=<f, bp },‘;)=Oj:], :1:2, P éa_lle_d the pth Fourier
coefficient with respect to orthonormal system {g,}.

< /; $5 ) $p is called the Fourier Series

or Fourier equn_._nbn of f with

Qicspect-to"thé“‘ar*-t'ﬁéﬁéi*ﬁia_l system {¢,} . . . e :
© 3. The orthomormal Tamily {¢,} is said to be complete if there exists no
- other orthonormal family containing it. . ., - Fod S
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4 The ofthonormal family {$,} is said to be an orthonormal basis-or-. -
closed orthomnormal system if the sum of the Fourier series of f with respect

W{?ﬁ;}'i_S"equal‘tof-vf&‘X,.i;e.,ff%ﬁ)(l;[_,_@p oM fEX.

Remark 2.13 1. If X= (0}, then X contains no orthonormal system.
2. An orthonormal system {¢,} is complete iff and for any x such that
xL{pn}, x must be zero.

3. Every nonzero Hilbert space contains a closed orthonormal set.? ¥%7 %
4, Every orthonormal system is closed iff it is complete.

EXAMPLE 2.9 Consider the Hilbert space Lx(0, 27) of complex-valued func-

. einx .
tions. (See Example 2.5) \/5 ,n=0, 4= 1, & 2...is an orthonormal sys-
7 :
tem as '
. . 2m gima ein_x
{ eimx, . ginx =J —_— —— dX
-9 - > 1o “\/27T \/277 N
{ (2 .
= ——f eimse=inx(fx =0 if m+#n
27 o T ' )
=1 ifm=n

‘ einx . 1 2m -, N B . .
an=ca=<J, \/fv—r> a V'ZWJQ Jf(x)e dx,n=0,n=0,+1, -L2...

are the Fourier coefficients of f& L0, 277) with respect to the orthonormal
einx 1 = L. .
system {——__,— e — c,e"* is the Fourier series of f.
d vV ‘21r} \/ 2w n=§oo e of /
This orthonormal system is known as complex trigonometric systen. This
system has been studied in great detail. (See, for example, Zygmund?!81.)

ExAMPLE 2.10 If we consider Ly(0, 2), {—\—/—12:,-\71.—_ cos nt, ﬂl—_* sin nr}
=" ) ALEY, .11' ’

n=1,2,3..,isan orthonormal system in Lg(q,-j’z'vr), i.é.,

T

’ N o A
oM s ps;—'”“ct@’fﬂ&?'
Y O O E 5y AT el 207

Py A SN, - o L
1 n ﬁ?ﬁ “’:/ O:'LX"'J‘\ AL b lap v @ Zaor
$u= -\—/—;— cos {5 ¢ whien #%i§ an even positive integon A= 7T "7 ow

\"‘QL’:(C":‘!"' 9(-' 45(’(-@'.—5_ b o\

1 . n+1 X . . e T .. . --'(_5.{ ; “:E.‘T -__‘.
=-—=8in t when # is an odd positive integer f{;f@l, PR
P : 2

2

ot
T g LRAT g Ve

We now define, for f€L2(0, 27), =< fr b s e

o 1 C 1 '2.7"' |
ap=< f, do >=.[0 S(t) N 2 dt‘— ‘\/f«;jo OLY

ai=C Sy b1 >= j 000 dt
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27
= L_ sin 7 dt
0 T

N O
o e =7_::— '(;":f(l‘)‘SID77if o ’ ’ rj‘
—— v

27
2= S0~ [ fioatr)

=% :"f(z) cos ¢ df
a3 =< f, ¢3>=\/~1_ :ﬂf(Z)SiHtht-
ws=C S, e >=7‘_ ) cos 21

Consider now the ordinary Fourier coefficients

1 297
00=; 0 f(’)d’

1 (27 ; n
Un=— f . J) cos ( ?z) dr where # is an even positive

integer
. 1 (27 . [n+1 . '
and b == f . J(?) sin ( —5— t) dt where # is an odd positive
integer ' 9.

Then we have following relationships,

%o = o N/?W
% =b\/=
%2=a\/7
«3:= b3/
o(4=a4\/;

2

1 : ; ;
5 @+ 3, (ax cos nx+b, sin nx) is known as the Irigonometric Foyyier Series
n=|

of /&€ Ly(0, 2). ,
This has been extensively studied. [See Bari!s and Zygmund?81,)

EXAMPLE 2.11  Let us define a sequence of functions (7). $1(2). . . . f/»,,Oi
-« . which satisfy the following conditions, :

po(t) =1 if()<t<2i

- pl)=~1 it <i<q
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bo(t +1) = pol1)
$u(t) = $o(27)

% where n=1,2, Bn . .. I

The functions ¢,(1) are called Rademacher’s functions.! This system of
functions is orthogonal but not complete. ‘

Now, we define a system of functions in terms of Rademacher systems as
follows. ho(t) = 1, hu(t) = ¢ (O)en(E) . - - $n (1), 0 <t <1, for n=2m+2m+
v+ 2y , where the nonnegative integers », are uniquely determined by the
inequalities 7;.1 < 7. '

It is clear from the'definition that -y (t) = ¢m(r)-

The system of functions {i,(¢)}, defined above, is called the system of
Walsh functions. This is a complete orthonormal system in the Hilbert space

B l
of real-valued functions Zx(0, 1). an=<f, ¢¥a >= J’o SOWu(2) dt, where n=0,

1, 2,3, ..., are Walsh Fourier coefficients of f&L(0, 1) and :0‘_] andn(t) is

the Walsh Fourier series of f..

The concept of Walsh functions and its Fourier expansion was given by
JL Walsh in 1'923. A major breakthrough came in the.researches of NJ
Fine in 1946. He introduced the concept of the dyadic group G which play-
ed a significant role in the development of this theory. The concept of the
dyadic derivative, investigated in early seventies by Gibbs, Millard, Butzer
and Wagner, was of vital importance for many applications. In the last
decade, this has been a favourite topic of research for electrical and electro-
nic engineers; especially in the USA, UK, FRG and India. For details we
refer to Beauchamp's, Harmuth?2, Siddiqi A H4 Siddiqi M U6, This is
one of the most interesting topics for theoretical and applied researches of
our time.

’
L+

Theorem 2.10) (Gram-Schmidt orthogonalization process) Let X be anX > ==

Y
PP R

. . n . . .-r v -t
inner-product space and {xi, X2, . . , ¥a} be a linearly independent set of (5/';;_:5'.?_ an
clements of X. Then there exists an orthonormal system {pi=1,2,..., nNss ty

EIET S A

such that for each #z the subspaée of X spanned by {x1, %2, . .., Xn, .. .y isthe <7071
same as the space of X spanned by {¢}. ' ey

Proof We prove it by induction. In other words, we show that the state-
ment is true for n=1 and true for n whenever true for n— 1. This will imply
that it is true for all natural numbers #.

Let n=1. Then x;70. Now, ¢, =T%ﬂ- and || ¢; ||=<

xl__ X1 >
e 71 % |l

Tl { x1, x1 > =1 (using results of Section 2.1).
l .
_ Since I x; Il ¢;=x;, the set of linsar combinations of xyis the same as the

set of linear combinations of || xr{| ¢1- Hence, the subspace spanned by x;
is the same as the subspace spanned by || x; || p1. Thus, the theorem is

true for n= 1. v e
el L

=
-
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Suppose that theorem is true for 7~ 1."'We now construct ‘an sth vector

$» With the same property. For this, we Cpnsider the vector w=x,— }: 4 x,,,

P 3
i 3
¢,>q§,andl < n—1.Then, {u, ¢; Y= x,~ V‘(x,,,aﬁ,/qﬂ,,qﬁ,) i
By the apphcatlon of the results m Sec. 2.1, we obtam
<u¢.l> <x’l:(/6j/—_2 \xn:¢l/(¢l:¢1/ 5
-<xm¢}> L<xm¢l><¢b d’// :
Con did=0 it ist) ‘
4 =1 ifi=j, iz ;
. the above relation gives us AT _ i
R B / 2 |
\ u ¢J > < xlly ¢<‘> < xlls d’f \/=O .
Hence, ul¢,, '—l A, o n— 1.
us#0, otherwxse Xy = L < ik, ¢, > </>,, i.e. X is a linear combination of Ol
R and since the theorem i lS true for n -1; x,is also linear combi-
natlon of x1, X2, .. ., X,_y, which is a contradiction to the fact that {xi, X2,
. x,,,l, Xm, - .. is a ]mearly independent set. -
Now choose = ” ” ” Thus {¢;}, i=1, 2 .« 7t7is an orthonormal :
system. o~y
s » 4
p=1 By
) "Z<xp:¢5>‘/’i . » 3
Since  ¢,= =1 _ - forp=1,2,3,..., m

30~ 5 o i )

every X, can be expressed as the linear -combination of p,. Hence, the sub-
"space spanned by {>x1, x2, ..., xn} is the same as the subspace spanned by

)i=1,2,.

This proves the theorem
2.3.2 Bessel’s Inequality

Tlteoiem 2.11 (Bessel’s. mequa.hty) Lct {¢i} i= 1, 25+« 11 be an orthonor-
mal system of - vectors in a Hilbert spdceX '

Then, for an.nyzY,'le hgivf< Hf”z-
Proof Let g=f~%,<f; i > i Then for anyj, 1 < / < n, we Have
i=1 : '

e

'<w@/ U”E<f@>%@>
| =SB b > ;
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by using the properties of the inner product.

{onpp>=0 ifi#]
e . ~oo=1 Cifi=j

The above relation gives us { g, ; > = <f, o1 >—<frpi>=0.
Hence gly; for 1 < j < n, and the vectors g, (f, p17 o1, <S> P27 #1,

v o {fy Pn > pa form an orthonormal system.

By the Pythagorean theorem, we have || /2= g+2 {hromeilP=Hgl?

+l '___Z_;, Fped ol

Applying Pythagorean theorem for 2 elements, we have
RTADTA S N RSA DL
S R
NEANY

I pil2=< o0 pi >=1
(Let Xy, Xa, . . ., X, be n orthogonal elements. Then | 3, x:|2= f_“ Il xi |12
. i=1 i=1
follows by induction from the Pythagorean theorem.)
Thus, | fI2=1l g P+ X, | <f, 01> P

Since || g I = 0, i [ <fiegi>P IS ||2: This proves the desired result.
i=1

Corollary 2.1 1. For X and {p,} as in Example 2.10 we have fj [ o |2
< w‘ n=n

© 2. If s and b,’s are ordinary trigonometric Fourier coefficients, then
lim @,=0, and lim 5,=0.

N=>=0 n—>

: .. This result is known as the' Riemann-Lebesgue theoren.

Proof 1. Since f&Ly(0, 27) and < f, @; =0y, the Bessel's inequality gives
us Zlvul If1? < oo.

n=

By the relatlonshlps between a,’s, ba’s and o,’s given in Example 2.10
we have

% [ an | = a5 5 +m(% (@it B3)

21 .
<irie= [l pa< e
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(I-) .
ie, ¥ (a2« b2) < o, which implies that
na| :

lim (g +b0)=0 e

L o e e

or lim a2 =0
n—->w0

Y

and Iim ;=0
N>

lim ¢,=0
>0

and lim ,=0
Nn—>c0

Theovem 2.12 For an orthonormal system {pah, i=1,2,.. ., in a Hilbert
X, for each fE X, the following relation holds.

I1P=1% 1< pi> (2.25)
i I= LS eide

Proof Suppose that {pi} is a closed orthonormal system in X i.e.
AR RETBTS
Then 1121 32 </, s >pi P
= St Imle

We get the above rclation by applying the Pythagorean theorem for p
orthogonal elements, namely

CLeid>enlfipadoa..., S Pr ) pn.

Asliedl=1 wehave [ fI2= S b figyp. o L (e F O

=1 TSt BN S
St A e l/\-._

Conversely, ifj| f|12= i [ <fipi>|? as sHoWn in the proof O'E-'the Bessel’s
_ i=1 "

neauality, we have LS IP=llg 23 gj+ < £ o> P, where goyo g

=
{/s p1> pi. This implies that 1g1*=0,ie., g=f— Z)l S ﬁ: >pi=0orf= E
L= . ‘ i=1

S Pi ) P

Remark 2.16  The.relation |l /2= ¥ | </, p/ > |2 is known as Parseval’s
: =1 c

iaeiilily,
2. Parseval’s identity is valid iff the orthonormal system {p;} is closed.

S

.
el
I

\\.;: ‘J( S
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2.4 DUALITY AND REFLEXIVITY

2.4.1 " Riesz Representation Theorem

In thlS section, we prove a theorem which gives (the representation of a
bounded..linear functional defined on a_HxIbert space; and with the help of
it the relation between a Hilbert space and.its dual aresstudied. |

}-‘C-E- A

Theorem 2.13° (Riesz representation theorem) If '@is a bounded linear
functional on a Hilbert space X, there exists a unique vector y& X such that

N L v
fE=CxpdvxeX,and | f=llyl. YFETT BLIH S S
Proof 1. In the first place, we prove that there exists an element y such 1 J

that f(x) =<{x,y d¢¥xEX.

(@) If =0, then f(x)=0+xe&X. Therefore, y=0 is the vector for which
{x,y>=0vxeX. (We have seen that ( x, 0 >=0.) Thus, the existence of
vector y is proved when =0

(b) Let £+~ 0. By prop051t10nl 1(4) the null space N of f is a proper

closed subspace of X and by Lemma 2.3, there exists a nonzero vector uX

> #.such that # 1L N We show that if « is a sultably chosen scalar, y = o satis-
. -, fies the condifion of the theorem.
v/ (c¢) If x&NCX, then whatever be «, f(ﬂ-(’) nt(x 7 \ as u | N Thm
L f)=x, au . Hence the existence of y oy is proved for all x€N.

(d) Since u | N, u ¢ N; let x=ucsX - Iff(u) (u, o > cxll u [|2, then

_f@) e

“ul?

Therefore, for « =ljl"£_x”)2, the vector y=oau satisfies the condition of the

theorem in this case, i.e. flu)={ u, au ).

(e) Since u¢ N, f(u) # 0 and so J}(( g is defined for any x&X, Consider

x — Bu, wherg B= % Then f(x — Bu) =f(x) = Bf(u) = 0. This implies that
x— fucsN. :
Every x&X can be written as x = x — fu+ Bu. Therefore, for each x& X,
S () =f(x— Pu+ Bu) =f(x - Bu) +f(Bu)
= f(x — Bu) + Bf (u) (f is linear)
={ x—Bu,,ocu S+ B uyau )

by (c) and (d), where a = lf( P (Since x—BuEN, by (c), f(x - Bu) = {x - Bu,
&) )

eu , for every.o and so for o=

Py

This gives us f(x) =< x—Bu, ou >+( Bu, au) {x, au . Thus for an
arbitrary x& X, there exists a vector y =ou such that f(x)={ x, y >

£ (i)

] N

-,



