Three Dimensional

 Modeling Transformations
Three Dimensional Modeling Transformations

Methods for object modeling transformation in three dimensions are extended from two dimensional methods by including consideration for the z coordinate.

Three Dimensional Modeling Transformations

Generalize from 2D by including \mathbf{z} coordinate
Straightforward for translation and scale, rotation more difficult

Homogeneous coordinates: 4 components
Transformation matrices: 4×4 elements

3D Point

We will consider points as column vectors. Thus, a typical point with coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is represented as:

3D Point Homogenous Coordinate

A 3D point \mathbf{P} is represented in homogeneous coordinates by a 4-dim. Vect:

3D Point Homogenous Coordinate

- We don't lose anything

The main advantage: it is easier to compose translation and rotation

Everything is matrix multiplication

3D Coordinate Systems

- Right Hand coordinate system:

Plotting a point in 3D

- Q1: Plot the following points:

P1(2,3,1), P2(1,-1,-2), P3(2,4,6), P4(-2,-4,8), P5(2,7,4), P6(4,-4,5).

- Q2: Draw a cube where it has the following points: $\mathrm{A}(2,4,0), \mathrm{B}(0,4,3), \mathrm{C}(2,4,3), \mathrm{D}(2,0,3), \mathrm{E}(0,4,0), \mathrm{F}(2,0,0)$, $\mathrm{G}(0,0,3)$.
- H.W: Plot the following points:
$\mathrm{A}(1,5,-2), \mathrm{B}(-2,0,4), \mathrm{C}(3,3,3), \mathrm{D}(2,-3,1), \mathrm{E}(0,-4,-1)$,
$\mathrm{F}(-3,0,0)$?
- H.W: Draw a cuboid where it has the following points: $\mathrm{P}(5,3,0), \mathrm{T}(5,0,0), \mathrm{Q}(5,3,4), \mathrm{S}(5,0,4), \mathrm{R}(0,0,4), \mathrm{U}(0,3,0)$, $\mathrm{J}(0,3,4)$?

3D Transformation

In homogeneous coordinates, 3D

 transformations are represented by 4×4 matrixes:$$
\left[\begin{array}{llll}
a & b & c & t_{x} \\
d & e & f & t_{y} \\
g & h & i & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Translation

3D Translation

\mathbf{P} is translated to \mathbf{P}^{\prime} by:

$\mathbf{P}^{\prime}=\mathbf{T} \cdot \mathbf{P}$

3D Translation

An object is translated in 3D dimensional by transforming each of the defining points of the objects.

3D Translation

An Object represented as a set of polygon surfaces, is translated by translate each vertex of each surface and redraw the polygon facets in the new position.

$$
T^{-1}\left(t_{x}, t_{y}, t_{z}\right)=T\left(-t_{x},-t_{y},-t_{z}\right)
$$

3D Rotation

3D Rotation

In general, rotations are specified by a rotation axis and an angle. In two-dimensions there is only one choice of a rotation axis that leaves points in the plane.

3D Rotation

The easiest rotation axes are those that parallel to the coordinate axis.

- Positive rotation angles produce counterclockwise rotations about a coordinate axix, if we are looking along the positive half of the axis toward the coordinate origin.

Coordinate Axis Rotations

Coordinate Axis Rotations

 - Z-axis rotation: For z axis same as 2 D rotation:$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
$\mathbf{P}^{\prime}=\mathbf{R}_{z}(\boldsymbol{\theta}) \cdot \mathbf{P}$

Coordinate Axis Rotations X -axis rotation:

Coordinate Axis Rotations

- Y-axis rotation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

General Three Dimensional

 Rotations
General Three Dimensional Rotations Rotation axis parallel with coordinate axis (Example \mathbf{x} axis):

(b)

Translate Rotation Axis onto x Axis

(c)

Rotate Object Through Angle θ

(d)

Translate Rotation Axis to Original Position

General Three Dimensional Rotations arbitirary axis

Translate F to the Crigin

Rotate F onto the x Axis
Tracslate to the Original Fosition
$\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{x}^{-1}(\alpha) \cdot \mathbf{R}_{y}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{y}(\beta) \cdot \mathbf{R}_{x}(\alpha) \cdot \mathbf{T}$

General Three Dimensional Rotations

$\mathbf{R}(\theta)=\mathbf{T}^{-1} \cdot \mathbf{R}_{r}^{-1}(\alpha) \cdot \mathbf{R}_{v}^{-1}(\beta) \cdot \mathbf{R}_{z}(\theta) \cdot \mathbf{R}_{v}(\beta) \cdot \mathbf{R}_{r}(\alpha) \cdot \mathbf{T}$

- A rotation matrix for any axis that does not coincide with a coordinate axis can be set up as a composite transformation involving combination of translations and the coordinate-axes rotations:

1. Translate the object so that the rotation axis passes through the coordinate origin
2. Rotate the object so that the axis rotation coincides with one of the coordinate axes
3. Perform the specified rotation about that coordinate axis
4. Apply inverse rotation axis back to its original orientation
5. Apply the inverse translation to bring the rotation axis back to its original position

3D Scaling

3D Scaling

About origin: Changes the size of the object and repositions the object relative to the coordinate origin.

3D Scaling
 About any fixed point:

(a)

(c)

(b)

(d)

Composite

3D Transformations

Composite 3D Transformations Same way as in two dimensions:

- Multiply matrices
- Rightmost term in matrix product is the first transformation to be applied

3D Reflections

3D Reflections

About an axis: equivalent to
180° rotation about that axis

3D Reflections

About a plane:

- A reflection through the $\mathbf{x y}$ plane:
$\left[\begin{array}{c}x \\ y \\ -z \\ 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
- A reflections through the $\mathbf{X Z}$ and the $\mathbf{y z}$ planes are defined similarly.

3D Shearing

3D Shearing

Modify object shapes

Useful for perspective projections:

- E.g. draw a cube (3D) on a screen (2D)
- Alter the values for \mathbf{x} and \mathbf{y} by an amount proportional to the distance from $\mathrm{z}_{\mathrm{ref}}$

3D Shearing

$$
M_{z \text { shear }}=\left[\begin{array}{cccc}
1 & 0 & s h_{z x} & -s h_{z x} \cdot z_{\text {ref }} \\
0 & 1 & s h_{z y} & -s h_{z y} \cdot z_{\text {ref }} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

