
OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

1 | P a g e

Public and Private Inheritance

C++ provides a wealth of ways to fine-tune access to class members. One

such access-control mechanism is the way derived classes are declared.

Our examples so far have used publicly derived classes, with declarations

like class manager: public employee which appeared in the EMPLOY

example.

What is the effect of the public keyword in this statement, and what are the

alternatives? Listen up: The keyword public specifies that objects of the

derived class are able to access public member functions of the base class.

The alternative is the keyword private. When this keyword is used, objects

of the derived class cannot access public member functions of the base

class. Since objects can never access private or protected members of a

class, the result is that no member of the base class is accessible to objects

of the derived class.

Access Combinations

There are so many possibilities for access that it’s instructive to look at an

example program that shows what works and what doesn’t. Here’s the

listing for PUBPRIV:

// pubpriv.cpp

// tests publicly- and privately-derived classes

#include <iostream>

//

class A //base class

{

private:

int privdataA; //(functions have the same access

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

2 | P a g e

protected: //rules as the data shown here)

int protdataA;

public:

int pubdataA;

};

//

class B : public A //publicly-derived class

{

public:

void funct()

{

int a;

a = privdataA; //error: not accessible

a = protdataA; //OK

a = pubdataA; //OK

}

};

//

class C : private A //privately-derived class

{

public:

void funct()

{

int a;

a = privdataA; //error: not accessible

a = protdataA; //OK

a = pubdataA; //OK

}

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

3 | P a g e

};

//

int main()

{

int a;

B objB;

a = objB.privdataA; //error: not accessible

a = objB.protdataA; //error: not accessible

a = objB.pubdataA; //OK (A public to B)

C objC;

a = objC.privdataA; //error: not accessible

a = objC.protdataA; //error: not accessible

a = objC.pubdataA; //error: not accessible (A private to C)

return 0;

}

The program specifies a base class, A, with private, protected, and public

data items. Two classes, B and C, are derived from A. B is publicly

derived and C is privately derived.

As we’ve seen before, functions in the derived classes can access

protected and public data in the base class. Objects of the derived classes

cannot access private or protected members of the base class.

What’s new is the difference between publicly derived and privately

derived classes. Objects of the publicly derived class B can access public

members of the base class A, while objects of the privately derived class C

cannot; they can only access the public members of their own derived

class. This is shown in Figure

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

4 | P a g e

Multiple Inheritance

A class can be derived from more than one base class. This is called

multiple inheritance. Figure shows how this looks when a class C is

derived from base classes A and B.

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

5 | P a g e

The syntax for multiple inheritance is similar to that for single inheritance.

In the situation shown in Figure the relationship is expressed like this:

class A // base class A

{

};

class B // base class B

{

};

class C : public A, public B // C is derived from A and B

{

};

The base classes from which C is derived are listed following the colon in

C’s specification; they are separated by commas.

Member Functions in Multiple Inheritance

As an example of multiple inheritance, suppose that we need to record the

educational experience of some of the employees in the EMPLOY

program. Let’s also suppose that, perhaps in a different project, we’ve

already developed a class called student that models students with

different educational backgrounds. We decide that instead of modifying

the employee class to incorporate educational data, we will add this data

by multiple inheritance from the student class.

The student class stores the name of the school or university last attended

and the highest degree received. Both these data items are stored as

strings. Two member functions, getedu() and putedu(), ask the user for this

information and display it.

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

6 | P a g e

Educational information is not relevant to every class of employee. Let’s

suppose, somewhat undemocratically, that we don’t need to record the

educational experience of laborers; it’s only relevant for managers and

scientists. We therefore modify manager and scientist so that they inherit

from both the employee and student classes, as shown in Figure 9.10.

Here’s a miniprogram that shows these relationships (but leaves out

everything else):

class student

{ };

class employee

{ };

class manager : private employee, private student

{ };

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

7 | P a g e

class scientist : private employee, private student

{ };

class laborer : public employee

{ };

And here, featuring considerably more detail, is the listing forEMPMULT:

//empmult.cpp

//multiple inheritance with employees and degrees

#include <iostream>

using namespace std;

const int LEN = 80; //maximum length of names

//

class student //educational background

{

private:

char school[LEN]; //name of school or university

char degree[LEN]; //highest degree earned

public:

void getedu()

{

cout << “ Enter name of school or university: “;

cin >> school;

cout << “ Enter highest degree earned \n”;

cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;

cin >> degree;

}

void putedu() const

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

8 | P a g e

{

cout << “\n School or university: “ << school;

cout << “\n Highest degree earned: “ << degree;

}

};

//

class employee

{

private:

char name[LEN]; //employee name

unsigned long number; //employee number

public:

void getdata()

{

cout << “\n Enter last name: “; cin >> name;

cout << “ Enter number: “; cin >> number;

}

void putdata() const

{

cout << “\n Name: “ << name;

cout << “\n Number: “ << number;

}

};

//

class manager : private employee, private student //management

{

private:

char title[LEN]; //”vice-president” etc.

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

9 | P a g e

double dues; //golf club dues

public:

void getdata()

{

employee::getdata();

cout << “ Enter title: “; cin >> title;

cout << “ Enter golf club dues: “; cin >> dues;

student::getedu();

}

void putdata() const

{

employee::putdata();

cout << “\n Title: “ << title;

cout << “\n Golf club dues: “ << dues;

student::putedu();

}

};

//

class scientist : private employee, private student //scientist

{

private:

int pubs; //number of publications

public:

void getdata()

{

employee::getdata();

cout << “ Enter number of pubs: “; cin >> pubs;

student::getedu();

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

10 | P a g e

}

void putdata() const

{

employee::putdata();

cout << “\n Number of publications: “ << pubs;

student::putedu();

}

};

//

class laborer : public employee //laborer

{

};

//

int main()

{

manager m1;

scientist s1, s2;

laborer l1;

cout << endl;

cout << “\nEnter data for manager 1”; //get data for

m1.getdata(); //several employees

cout << “\nEnter data for scientist 1”;

s1.getdata();

cout << “\nEnter data for scientist 2”;

s2.getdata();

cout << “\nEnter data for laborer 1”;

l1.getdata();

cout << “\nData on manager 1”; //display data for

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

11 | P a g e

m1.putdata(); //several employees

cout << “\nData on scientist 1”;

s1.putdata();

cout << “\nData on scientist 2”;

s2.putdata();

cout << “\nData on laborer 1”;

l1.putdata();

cout << endl;

return 0;

}

The getdata() and putdata() functions in the manager and scientist classes

incorporate calls to functions in the student class, such as

student::getedu(); and student::putedu();

These routines are accessible in manager and scientist because these

classes are descended from student.

Here’s some sample interaction with EMPMULT:

Enter data for manager 1

Enter last name: Bradley

Enter number: 12

Enter title: Vice-President

Enter golf club dues: 100000

Enter name of school or university: Yale

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): Bachelor’s

Enter data for scientist 1

Enter last name: Twilling

OOP Multiple Inheritance Dr. Ahmed Hashim Mohammed

12 | P a g e

Enter number: 764

Enter number of pubs: 99

Enter name of school or university: MIT

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): PhD

Enter data for scientist 2

Enter last name: Yang

Enter number: 845

Enter number of pubs: 101

Enter name of school or university: Stanford

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): Master’s

Enter data for laborer 1

Enter last name: Jones

Enter number: 48323

As we saw in the EMPLOY and EMPLOY2 examples, the program then

displays this information in roughly the same form.

Private Derivation in EMPMULT

The manager and scientist classes in EMPMULT are privately derived

from the employee and student classes. There is no need to use public

derivation because objects of manager and scientist never call routines in

the employee and student base classes. However, the laborer class must be

publicly derived from employer, since it has no member functions of its

own and relies on those in employee.

