ecture 12
Computer Technology

First Grade
2018-2019

Assistant Prof. Dr. Emad | Abdul Kareem
College of Education
Computer Science Department
4y paiiuall 42aall| Mustansiriyah University

1

CpU@M&W\j%&i%@)&\gﬁw\@&\ﬂw\c:\A QA@JSJ\JJ\SJ&JJAA;%NA
Z\.‘Sﬁu‘g\aﬁ\yahgé‘goj\gﬁwj%du&ﬂ\ea-u‘i\uj\ \Jﬁu\%ﬁ&ﬂwd&‘}\dﬁ@\gﬂ\&ﬁ
Q@ﬂuﬂl&d\e&%&&dﬂi@‘gw‘oh MM\%UJ&J@UAM&JISW&@JA\@

45 gAY clal)) ABLYL amidl) B Aplial)

ecture 12
Introduction to 8086 Programming

The 8086 microprocessor is one of the family of 8086, 80286, 80386, 80486,
Pentium, Pentiuml, II, III Also referred to as the X86 family. Learning any
Imperative programming language involves mastering a number of common
concepts :

Variables: declaration/definition
Assignment: assigning values to variables
Input/Qutput: Displaying messages

Displaying variable values Control flow: if-then
Loops Subprograms: Definition and Usage

Programming in assembly language involves mastering the same concepts and a
few other issues .

12.1 Variables

For the moment we will skip details of variable declaration and simply use
the 8086 registers as the variables in our programs. Registers have predefined names
and do not need to be declared.

The 8086 has 14 registers. Each of these is a 16-bit register. Initially, we will
use four of them — the so called the general purpose registers :

ax, bx, cx, dx
These four 16-bit registers can also be treated as eight 8-bit registers:

ah, al, bh, bl, ch, cl, dh, di

2
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂu\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigﬁus"%dugiﬁﬂ\eua\}\ul\ \J&u\@&ﬂﬁd&?\dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

12.2 Assignment
In Java, assignment takes the form :
X=42; y=24; z=X+Yy;

In assembly language we carry out the same operation but we use an

instruction to denote the assignment operator (“=""1n Java). The above assignments
would be carried out in 8086 assembly langauge as follows

mov X,42 mov y,24 add z,x add z,vy

The mov instruction carries out assignment. It which allows us place a
number in a register or in a memory location (a variable) i.e. it assigns a value to a
register or variable .

Example: Store the ASCII code for the letter A in register bx .
mov bx, ‘A’

The mov instruction also allows you to copy the contents of one register into
another register .

Example: mov bx,2 mov cx, bx

The first instruction loads the value 2 into bx where it is stored as a binary
number. [a number such as 2 is called an integer constant]. The Mov instruction
takes two operands, representing the destination where data is to be placed and the
source of that data . The General Form of Mov Instruction is:

mov destination, source

Where destination must be either a register or memory location and source
may be a constant, another register or a memory location .

3
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂw\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigfus‘gg.dugiﬁﬂ\eua\}\ul\ \J&u\%ﬁ&ﬂﬁd&}“dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

Note: The comma is essential. It is used to separate the two operands. A missing
comma is a common syntax error Comments. Anything that follows semi-colon (;)
Is ignored by the assembler. It is called a comment. Comments are used to make
your programs readable. You use them to explain what you are doing in English .

12.3 More 8086 Instructions
add, inc, dec and sub instructions

The 8086 provides a variety of arithmetic instructions. For the moment, we
only consider a few of them. To carry out arithmetic such as addition or subtraction,
you use the appropriate instruction . In assembly language you can only carry out a
single arithmetic operation at a time. This means that if you wish to evaluate an
expression such as :

Z=X+y+wW-vV

You will have to use 3 assembly language instructions — one for each
arithmetic operation. These instructions combine assignment with the arithmetic
operation .

Example

mov ax, 5; load 5 into ax

add ax, 3; add 3 to the contents of ax, ; ax now contains 8
inc ax ; addltoax ;axnow contains9

dec ax ; subtractl1lfromax ;ax now contains 8

sub ax, 6 ; subtract4 fromax ; ax now contains 2

The add instruction adds the source operand to the destination operand,
leaving the result in the destination operand . The destination operand is always the
first operand in 8086 assembly language.

4

Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂu\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigﬁus"%dugiﬁﬂ\eua\}\ul\ \J&u\@&ﬂﬁd&?\dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

The inc instruction takes one operand and adds 1 to it. It is provided because
of the frequency of adding 1 to an operand in programming .

The dec instruction like inc takes one operand and subtracts 1 from it. This is
also a frequent operation in programming .

The sub instruction subtracts the source operand from the destination operand
leaving the result in the destination operand.

12.4 Implementing a loop: The jmp instruction
Label X: add ax, 2
add bx, 3
jmp Label X

The jmp instruction causes the program to start executing from the position
in the program indicated by the label Label X. This is an example of an endless
loop . We could implement a while loop using a conditional jump instruction such
as JL which means jump-if-less-than. It is used in combination with a comparison
instruction —cmp .

mov ax, 0
Label X: add ax, 2
add bx, 3
cmp ax, 10
jl Label X

The above loop continues while the value of ax is less than 10. The cmp
instruction compares ax to 0 and records the result. The jl instruction uses this result
to determine whether to jump to the point indicated by Label X .

5
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂw\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigfus‘gg.dugiﬁﬂ\eua\}\ul\ \J&u\%ﬁ&ﬂﬁd&}“dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

12.3 Input / Output

Each microprocessor provides instructions for 1/0O with the devices that are
attached to it, e.g. the keyboard and screen .The 8086 provides the instructions in for
input and out for output. These instructions are quite complicated to use, so we
usually use the operating system to do 1/O for us instead .In assembly language we
must have a mechanism to call the operating system to carry out I/0O . In addition
we must be able to tell the operating system what kind of 1/O operation we wish to
carry out, e.g. to read a character from the keyboard, to display a character or string
on the screen or to do disk I/0O . In 8086 assembly language, we do not call operating
system subprograms by name, instead, we use a software interrupt mechanism .An
interrupt signals the processor to suspend its current activity (i.e. running your
program) and to pass control to an interrupt service program (i.e. part of the
operating system).

A software interrupt is one generated by a program (as opposed to one
generated by hardware) . The 8086 int instruction generates a software interrupt .1t
uses a single operand which is a number indicating which MS-DOS subprogram is
to be invoked . For I/O and some other operations, the number used is 21h .Thus,
the instruction int 21h transfers control to the operating system, to a subprogram that
handles 1/0O operations. This subprogram handles a variety of 1/O operations by
calling appropriate subprograms .

This means that you must also specify which I/O operation (e.g. read a
character, display a character) you wish to carry out. This is done by placing a
specific number in a register . The ah register is used to pass this information . For
example, the subprogram to display a character is subprogram number 2h. This
number must be stored in the ah register. We are now in a position to describe
character output .

When the 1/O operation is finished, the interrupt service program terminates
and our program will be resumed at the instruction following int.

6
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂw\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigfus‘gg.dugiﬁﬂ\eua\}\ul\ \J&u\%ﬁ&ﬂﬁd&}“dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

12.3.1 Character Output

The task here is to display a single character on the screen. There are three
elements involved in carrying out this operation using the int instruction :

1. We specify the character to be displayed. This is done by storing the character’s
ASCII code in a specific 8086 register. In this case we use the dl register, i.e. we use
dl to pass a parameter to the output subprogram .

2. We specify which of MS-DOS’s 1/0 subprograms we wish to use. The
subprogram to display a character is subprogram number 2h. This number is stored
in the ah register .

3. We request MS-DOS to carry out the I/O operation using the int instruction. This
means that we interrupt our program and transfer control to the MS-DOS
subprogram that we have specified using the ah register .

Example 1: Write a code fragment to display the character ’a’ on the screen :
mov dl, ‘a®; dl=‘a‘
mov ah, 2h ; character output subprogram
int 21h ; call ms-dos output character
As you can see, this simple task is quite complicated in assembly language.
12.3.1 Character Input

The task here is to read a single character from the keyboard. There are also
three elements involved in performing character input:

1. As for character output, we specify which of MS-DOS’s 1/0 subprograms
we wish to use, i.e. the character input from the keyboard subprogram. This is MS-
DOS subprogram number 1h. This number must be stored in the ah register.

2. We call MS-DOS to carry out the 1/O operation using the int instruction as
for character output.

7
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂu\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigﬁus"%dugiﬁﬂ\eua\}\ul\ \J&u\@&ﬂﬁd&?\dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

3. The MS-DOS subprogram uses the al register to store the character it reads
from the keyboard.

Example 2: Write a code fragment to read a character from the keyboard:
mov ah, 1h ; keyboard input subprogram
int 21h ; character input ;
character is stored in al

The following example combines the two previous ones, by reading a
character from the keyboard and displaying it.

Example 3: Reading and displaying a character:
mov ah, 1h ; keyboard input subprogram
int 21h ; read character into al
mov dl, al ; copy character to di
mov ah, 2h ; character output subprogram

int 21h ; display character in dl

8
Cf-U@M&W\Jh&!%@)&\@M\@&\ﬂu\ah QA;)SJ\JJHS&JSAA;&ANA
Z\.‘Sﬁué\aﬁ\yahgé‘goigﬁus"%dugiﬁﬂ\eua\}\ul\ \J&u\@&ﬂﬁd&?\dﬁ&\gﬂ\@‘)ﬁ
Q@Sﬂuﬂl&d\e&%&ldﬂi@‘gw‘ah MM\@UJ&QUAM”JISW&G‘”,\S\@

45 gAY clal)) ABLYL amidl) B Aplial)

