The Adjoint of a Linear Operator

Michael Freeze

MAT 531: Linear Algebra

UNC Wilmington
Spring 2015

Adjoint Operator

Let $L: V \rightarrow V$ be a linear operator on an inner product space V.

Definition
The adjoint of L is a transformation $L^{*}: V \rightarrow V$ satisfying

$$
\langle L(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, L^{*}(\vec{y})\right\rangle
$$

for all $\vec{x}, \vec{y} \in V$.

Observation
The adjoint of L may not exist.

Representation of Linear Functionals

Theorem

Let V be a finite-dimensional inner product space over a field F, and let $g: V \rightarrow F$ be a linear transformation. Then there exists a unique vector $\vec{y} \in V$ such that $g(\vec{x})=\langle\vec{x}, \vec{y}\rangle$ for all $\vec{x} \in V$.

Proof Idea
Let $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be an orthonormal basis for V and take

$$
\vec{y}=\sum_{i=1}^{n} \overrightarrow{g\left(\vec{v}_{i}\right)} \vec{v}_{i} .
$$

Warning

In the prior theorem, the assumption that V is finite-dimensional is essential.

Let V be the vector space of polynomials over the field of complex numbers with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t$.

Fix a complex number z and let L be the linear functional defined by evaluation at z. That is, take $L(f)=f(z)$ for each f in V. Note that L is not the zero functional.

Claim:

There is no polynomial g such that

$$
L(f)=\langle f, g\rangle
$$

for all f in V.

Warning

Claim:

There is no polynomial g such that

$$
L(f)=\langle f, g\rangle
$$

for all f in V.
Suppose that we have

$$
f(z)=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

for all f.
Let $h=x-z$, so that for any f we have $(h f)(z)=0$. Then

$$
0=\int_{0}^{1} h(t) f(t) \overline{g(t)} d t
$$

for all f.

Warning

Claim:

There is no polynomial g such that

$$
L(f)=\langle f, g\rangle
$$

for all f in V.
In particular, when $f=\bar{h} g$ we have

$$
0=\int_{0}^{1}|h(t)|^{2}|g(t)|^{2} d t
$$

so that $h g=0$.
Since $h \neq 0$, we must have $g=0$. But then $L(f)=\langle f, g\rangle=0$ for all f, and we know that L is not the zero functional.

Existence and Uniqueness of the Adjoint Operator

Theorem

Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function $T^{*}: V \rightarrow V$ such that $\langle T(\vec{x}), \vec{y}\rangle=\left\langle\vec{x}, T^{*}(\vec{y})\right\rangle$ for all $\vec{x}, \vec{y} \in V$. Furthermore, T^{*} is linear.

Proof Idea
Let $\vec{y} \in V$. Define $g_{\vec{y}}: V \rightarrow F$ by $g_{\vec{y}}(\vec{x})=\langle T(\vec{x}), \vec{y}\rangle$ for all $\vec{x} \in V$.

Apply the result of the prior theorem to obtain a unique vector $\vec{y} \in V$ such that $g_{\vec{y}}(\vec{x})=\left\langle\vec{x}, \vec{y}^{\prime}\right\rangle$ for all $\vec{x} \in V$.
Define $T^{*}: V \rightarrow V$ by $T^{*}(\vec{y})=\vec{y}^{\prime}$.

Observation

Let T be a linear operator on an inner product space V having adjoint T^{*}.

We have that

$$
\langle\vec{x}, T(\vec{y})\rangle=\overline{\langle T(\vec{y}), \vec{x}\rangle}=\overline{\left\langle\vec{y}, T^{*}(\vec{x})\right\rangle}=\left\langle T^{*}(\vec{x}), \vec{y}\right\rangle .
$$

Properties of Adjoint Operators

Theorem

Let V be a finite dimensional inner product space over a field F, and let T and U be linear operators on V having adjoints. Then
(a) $(T+U)^{*}=T^{*}+U^{*}$
(b) $(c T)^{*}=\bar{c} T^{*}$ for any $c \in F$
(c) $(T U)^{*}=U^{*} T^{*}$
(d) $\left(T^{*}\right)^{*}=T$
(e) $I^{*}=I$

Adjoint Matrix

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix with complex entries.
Definition
The adjoint matrix of A is the $n \times m$ matrix $A^{*}=\left(b_{i j}\right)$ such that $b_{i j}=\overline{a_{j i}}$.

That is, $A^{*}=\overline{A^{t}}$.

Example
Given $A=\left[\begin{array}{cc}1 & -2 i \\ 3 & i\end{array}\right]$, note that $A^{*}=\left[\begin{array}{cc}1 & 3 \\ 2 i & -i\end{array}\right]$.

Properties of Adjoint Matrices

Corollary
Let A and B be $n \times n$ matrices. Then
(a) $(A+B)^{*}=A^{*}+B^{*}$
(b) $(c A)^{*}=\bar{c} A^{*}$ for all $c \in F$
(c) $(A B)^{*}=B^{*} A^{*}$
(d) $\left(A^{*}\right)^{*}=A$
(e) $I^{*}=I$

The Matrix of the Adjoint Operator

Theorem

Let V be a finite-dimensional inner product space, and let β be an orthonormal basis for V. If T is a linear operator on V, then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$.
Proof
Let $\beta=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$, let $A=\left(a_{i j}\right)$ be the matrix of T, and let $B=\left(b_{i j}\right)$ be the matrix of T^{*}.

Since β is orthonormal, we have $a_{i j}=\left\langle T\left(\vec{v}_{j}\right), \overrightarrow{v_{i}}\right\rangle$ and $b_{i j}=\left\langle T^{*}\left(\vec{v}_{j}\right), \overrightarrow{v_{i}}\right\rangle$.

Observe that

$$
b_{i j}=\left\langle T^{*}\left(\vec{v}_{j}\right), \overrightarrow{v_{i}}\right\rangle=\overline{\left\langle\vec{v}_{i}, T^{*}\left(\overrightarrow{v_{j}}\right)\right\rangle}=\overline{\left\langle T\left(\overrightarrow{v_{i}}\right), \overrightarrow{v_{j}}\right\rangle}=\overline{a_{j i}},
$$

from which $B=A^{*}$ follows.

Example

Let $V=\mathbb{C}^{2}$ with inner product

$$
\langle\vec{x}, \vec{y}\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}} .
$$

Define a linear operator L on V by

$$
L\left(z_{1}, z_{2}\right)=\left(z_{1}-2 i z_{2}, 3 z_{1}+i z_{2}\right) .
$$

Find the adjoint L^{*}.

A Linear Operator without Adjoint

Let V be the vector space of polynomials over the field of complex numbers with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

Define the linear operator D on V by

$$
D(f)=f^{\prime}
$$

Show that D has no adjoint.

A Linear Operator without Adjoint

Integration by parts shows that

$$
\langle D(f), g\rangle=f(1) g(1)-f(0) g(0)-\langle f, D(g)\rangle
$$

Fix g and suppose that D has an adjoint. We must then have $\langle D(f), g\rangle=\left\langle f, D^{*}(g)\right\rangle$ for all f, so that

$$
\begin{aligned}
\left\langle f, D^{*}(g)\right\rangle & =f(1) g(1)-f(0) g(0)-\langle f, D(g)\rangle \\
\left\langle f, D^{*}(g)+D(g)\right\rangle & =f(1) g(1)-f(0) g(0)
\end{aligned}
$$

Since g is fixed, $L(f)=f(1) g(1)-f(0) g(0)$ is a linear functional formed as a linear combination of point evaluations.

By earlier work we know that this kind of linear functional cannot be of the the form $L(f)=\langle f, h\rangle$ unless $L=0$.

A Linear Operator without Adjoint

Since g is fixed, $L(f)=f(1) g(1)-f(0) g(0)$ is a linear functional formed as a linear combination of point evaluations.

By earlier work we know that this kind of linear functional cannot be of the the form $L(f)=\langle f, h\rangle$ unless $L=0$.

Since we have supposed $D^{*}(g)$ exists, we have for $h=D^{*}(g)+D(g)$ that

$$
L(f)=f(1) g(1)-f(0) g(0)=\left\langle f, D^{*}(g)+D(g)\right\rangle=\langle f, h\rangle .
$$

Since we must have $L=0$, it follows that $g(0)=g(1)=0$.
Hence by choosing g such that $g(0) \neq 0$ or $g(1) \neq 0$, we cannot suitably define $D^{*}(g)$.

The Fundamental Theorem of Linear Algebra

Theorem
Let $L: V \rightarrow V$ be a linear operator on an inner product space V. If the adjoint operator L^{*} exists, then

$$
\mathrm{N}(L)=\mathrm{R}\left(L^{*}\right)^{\perp} \quad \text { and } \quad \mathrm{N}\left(L^{*}\right)=\mathrm{R}(L)^{\perp}
$$

Proof Idea

$$
\begin{aligned}
\vec{x} \in \mathrm{~N}(L) & \Longleftrightarrow L(\vec{x})=\overrightarrow{0} \\
& \Longleftrightarrow\langle L(\vec{x}), \vec{y}\rangle=0 \text { for all } \vec{y} \in V \\
& \Longleftrightarrow\left\langle\vec{x}, L^{*}(\vec{y})\right\rangle=0 \text { for all } \vec{y} \in V \\
& \Longleftrightarrow \vec{x} \perp \mathrm{R}\left(L^{*}\right) \\
& \Longleftrightarrow \vec{x} \in \mathrm{R}\left(L^{*}\right)^{\perp}
\end{aligned}
$$

Example

Let $V=\mathbb{R}^{n}$ with dot product and let $A \in \mathcal{M}_{n, n}(\mathbb{R})$.
Define the linear operator L on V by $L(\vec{x})=A \vec{x}$.
Note that $L^{*}(\vec{x})=A^{*} \vec{x}$ for all $\vec{x} \in \mathbb{R}^{n}$.
The range of L^{*} is the column space of $A^{*}=A^{T}$, which is the row space of A.

Thus the null space of A is the orthogonal complement of the row space of A.

