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Adjoint Operator

Let L : V → V be a linear operator on an inner product space
V .

Definition
The adjoint of L is a transformation L∗ : V → V satisfying

〈L(~x), ~y〉 = 〈~x , L∗(~y)〉

for all ~x , ~y ∈ V .

Observation
The adjoint of L may not exist.
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Representation of Linear Functionals

Theorem
Let V be a finite-dimensional inner product space over a field
F , and let g : V → F be a linear transformation. Then there
exists a unique vector ~y ∈ V such that g(~x) = 〈~x , ~y〉 for all
~x ∈ V .

Proof Idea
Let β = {~v1, . . . , ~vn} be an orthonormal basis for V and take

~y =
n∑

i=1

g(~vi)~vi .
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Warning

In the prior theorem, the assumption that V is
finite-dimensional is essential.

Let V be the vector space of polynomials over the field of
complex numbers with inner product 〈f , g〉 =

∫ 1

0
f (t)g(t) dt.

Fix a complex number z and let L be the linear functional
defined by evaluation at z . That is, take L(f ) = f (z) for each
f in V . Note that L is not the zero functional.

Claim:
There is no polynomial g such that

L(f ) = 〈f , g〉

for all f in V .
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Warning

Claim:
There is no polynomial g such that

L(f ) = 〈f , g〉
for all f in V .

Suppose that we have

f (z) =

∫ 1

0

f (t)g(t) dt

for all f .

Let h = x − z , so that for any f we have (hf )(z) = 0. Then

0 =

∫ 1

0

h(t)f (t)g(t) dt

for all f .
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Warning

Claim:
There is no polynomial g such that

L(f ) = 〈f , g〉

for all f in V .

In particular, when f = hg we have

0 =

∫ 1

0

|h(t)|2 |g(t)|2 dt

so that hg = 0.

Since h 6= 0, we must have g = 0. But then L(f ) = 〈f , g〉 = 0
for all f , and we know that L is not the zero functional.
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Existence and Uniqueness of the Adjoint Operator

Theorem
Let V be a finite-dimensional inner product space, and let T
be a linear operator on V . Then there exists a unique function
T ∗ : V → V such that 〈T (~x), ~y〉 = 〈~x ,T ∗(~y)〉 for all
~x , ~y ∈ V . Furthermore, T ∗ is linear.

Proof Idea
Let ~y ∈ V . Define g~y : V → F by g~y (~x) = 〈T (~x), ~y〉 for all
~x ∈ V .

Apply the result of the prior theorem to obtain a unique vector
~y ′ ∈ V such that g~y (~x) = 〈~x , ~y ′〉 for all ~x ∈ V .

Define T ∗ : V → V by T ∗(~y) = ~y ′.
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Observation

Let T be a linear operator on an inner product space V having
adjoint T ∗.

We have that

〈~x ,T (~y)〉 = 〈T (~y), ~x〉 = 〈~y ,T ∗(~x)〉 = 〈T ∗(~x), ~y〉.
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Properties of Adjoint Operators

Theorem
Let V be a finite dimensional inner product space over a field
F , and let T and U be linear operators on V having adjoints.
Then

(a) (T + U)∗ = T ∗ + U∗

(b) (cT )∗ = cT ∗ for any c ∈ F

(c) (TU)∗ = U∗T ∗

(d) (T ∗)∗ = T

(e) I∗ = I
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Adjoint Matrix

Let A = (aij) be an m × n matrix with complex entries.

Definition
The adjoint matrix of A is the n ×m matrix A∗ = (bij) such
that bij = aji .

That is, A∗ = At .

Example

Given A =

[
1 −2i
3 i

]
, note that A∗ =

[
1 3
2i −i

]
.

10 / 18



Properties of Adjoint Matrices

Corollary
Let A and B be n × n matrices. Then

(a) (A + B)∗ = A∗ + B∗

(b) (cA)∗ = cA∗ for all c ∈ F

(c) (AB)∗ = B∗A∗

(d) (A∗)∗ = A

(e) I∗ = I
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The Matrix of the Adjoint Operator
Theorem
Let V be a finite-dimensional inner product space, and let β
be an orthonormal basis for V . If T is a linear operator on V ,
then [T ∗]β = [T ]∗β.

Proof
Let β = {~v1, . . . , ~vn}, let A = (aij) be the matrix of T , and let
B = (bij) be the matrix of T ∗.

Since β is orthonormal, we have aij = 〈T (~vj), ~vi〉 and
bij = 〈T ∗(~vj), ~vi〉.

Observe that

bij = 〈T ∗(~vj), ~vi〉 = 〈~vi ,T ∗(~vj)〉 = 〈T (~vi), ~vj〉 = aji ,

from which B = A∗ follows.
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Example

Let V = C2 with inner product

〈~x , ~y〉 = x1y1 + x2y2.

Define a linear operator L on V by

L(z1, z2) = (z1 − 2i z2, 3z1 + i z2).

Find the adjoint L∗.
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A Linear Operator without Adjoint

Let V be the vector space of polynomials over the field of
complex numbers with inner product

〈f , g〉 =

∫ 1

0

f (t)g(t) dt.

Define the linear operator D on V by

D(f ) = f ′.

Show that D has no adjoint.
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A Linear Operator without Adjoint

Integration by parts shows that

〈D(f ), g〉 = f (1)g(1)− f (0)g(0)− 〈f ,D(g)〉.

Fix g and suppose that D has an adjoint. We must then have
〈D(f ), g〉 = 〈f ,D∗(g)〉 for all f , so that

〈f ,D∗(g)〉 = f (1)g(1)− f (0)g(0)− 〈f ,D(g)〉
〈f ,D∗(g) + D(g)〉 = f (1)g(1)− f (0)g(0).

Since g is fixed, L(f ) = f (1)g(1)− f (0)g(0) is a linear
functional formed as a linear combination of point evaluations.

By earlier work we know that this kind of linear functional
cannot be of the the form L(f ) = 〈f , h〉 unless L = 0.
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A Linear Operator without Adjoint

Since g is fixed, L(f ) = f (1)g(1)− f (0)g(0) is a linear
functional formed as a linear combination of point evaluations.

By earlier work we know that this kind of linear functional
cannot be of the the form L(f ) = 〈f , h〉 unless L = 0.

Since we have supposed D∗(g) exists, we have for
h = D∗(g) + D(g) that

L(f ) = f (1)g(1)− f (0)g(0) = 〈f ,D∗(g) + D(g)〉 = 〈f , h〉.

Since we must have L = 0, it follows that g(0) = g(1) = 0.

Hence by choosing g such that g(0) 6= 0 or g(1) 6= 0, we
cannot suitably define D∗(g).
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The Fundamental Theorem of Linear Algebra

Theorem
Let L : V → V be a linear operator on an inner product space
V . If the adjoint operator L∗ exists, then

N(L) = R(L∗)⊥ and N(L∗) = R(L)⊥.

Proof Idea

~x ∈ N(L)⇐⇒ L(~x) = ~0

⇐⇒ 〈L(~x), ~y〉 = 0 for all ~y ∈ V

⇐⇒ 〈~x , L∗(~y)〉 = 0 for all ~y ∈ V

⇐⇒ ~x ⊥ R(L∗)

⇐⇒ ~x ∈ R(L∗)⊥
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Example

Let V = Rn with dot product and let A ∈Mn,n(R).

Define the linear operator L on V by L(~x) = A~x .

Note that L∗(~x) = A∗~x for all ~x ∈ Rn.

The range of L∗ is the column space of A∗ = AT ,
which is the row space of A.

Thus the null space of A is the orthogonal complement of the
row space of A.
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