
. Ahmed Hashim MohammedDr Class Static OOP

Structures and Classes

 In fact, you can use structures in almost exactly the same way that you

use classes. The only formal difference between class and struct is that in a

class the members are private by default, while in a structure they are

public by default.

Here’s the format we’ve been using for classes:

class foo

{

private:

int data1;

public:

void func();

};

Because private is the default in classes, this keyword is unnecessary. You

can just as well write and the data1 will still be private. Many

programmers prefer this style.

class foo

{

int data1;

public:

void func();

};

We like to include the private keyword because it offers an increase in

clarity. If you want to use a structure to accomplish the same thing as this

. Ahmed Hashim MohammedDr Class Static OOP

class, you can dispense with the keyword public, provided you put the

public members before the private ones

struct foo

{

void func();

private:

int data1;

};

Since public is the default. However, in most situations programmers

don’t use a struct this way. They use structures to group only data, and

classes to group both data and functions.

Classes, Objects, and Memory

we’ve probably given you the impression that each object created from a

class contains separate copies of that class’s data and member functions.

This is a good first approximation, since it Objects and Classes

emphasizes that objects are complete, self-contained entities, designed

using the class definition.

The mental image here is of cars (objects) rolling off an assembly line,

each one made according to a blueprint (the class definitions).

Actually, things are not quite so simple. It’s true that each object has its

own separate data items. On the other hand, contrary to what you may

have been led to believe, all the objects in a given class use the same

member functions. The member functions are created and placed in

memory only once—when they are defined in the class definition. This

makes sense; there’s really no point in duplicating all the member

functions in a class every time you create another object of that class,

. Ahmed Hashim MohammedDr Class Static OOP

since the functions for each object are identical. The data items, however,

will hold different values, so there must be a separate instance of each data

item for each object.

Data is therefore placed in memory when each object is defined, so there

is a separate set of data for each object. Figure 6.8 shows how this looks.

. Ahmed Hashim MohammedDr Class Static OOP

Static Class Data

In the SMALLOBJ example at the beginning of this chapter there are two

objects of type smallobj, so there are two instances of somedata in

memory. However, there is only one instance of the functions setdata()

and showdata(). These functions are shared by all the objects of the class.

There is no conflict because (at least in a single-threaded system) only one

function is executed at a time.

In most situations you don’t need to know that there is only one member

function for an entire class. It’s simpler to visualize each object as

containing both its own data and its own member functions. But in some

situations, such as in estimating the size of an executing program, it’s

helpful to know what’s happening behind the scenes.

Having said that each object contains its own separate data, if a data item

in a class is declared as static, only one such item is created for the entire

class, no matter how many objects there are. A static data item is useful

when all objects of the same class must share a common item of

information. A member variable defined as static has characteristics

similar to a normal static variable: It is visible only within the class, but its

lifetime is the entire program. It continues to exist even if there are no

objects of the class. However, while a normal static variable is used to

retain information between calls to a function, static class member data is

used to share information among the objects of a class.

Uses of Static Class Data

why would you want to use static member data? As an example, suppose

an object needed to know how many other objects of its class were in the

program. In a road-racing game, for example, a race car might want to

. Ahmed Hashim MohammedDr Class Static OOP

know how many other cars are still in the race. In this case a static variable

count could be included as a member of the class. All the objects would

have access to this variable. It would be the same variable for all of them;

they would all see the same count.

An Example of Static Class Data

Here’s an example, STATDATA that demonstrates a simple static data

member:

// statdata.cpp

// static class data

#include <iostream>

using namespace std;

//

class foo

{

private:

static int count; //only one data item for all objects

//note: “declaration” only!

public:

foo() //increments count when object created

{ count++; }

int getcount() //returns count

{ return count; }

};

//--

int foo::count = 0; //*definition* of count

//

. Ahmed Hashim MohammedDr Class Static OOP

int main()

{

foo f1, f2, f3; //create three objects

cout << “count is “ << f1.getcount() << endl; //each object

cout << “count is “ << f2.getcount() << endl; //sees the

cout << “count is “ << f3.getcount() << endl; //same value

return 0;

}

The class foo in this example has one data item, count, which is type

static int.

The constructor for this class causes count to be incremented. In main()

we define three objects of class foo. Since the constructor is called three

times, count is incremented three times. Another member function,

getcount(), returns the value in count. We call this function from all three

objects, and—as we expected—each prints the same value. Here’s the

output:

count is 3 ← static data

count is 3

count is 3

If we had used an ordinary automatic variable—as opposed to a static

variable—for count, each constructor would have incremented its own

private copy of count once, and the output would have been

count is 1 ← automatic data

count is 1

count is 1

. Ahmed Hashim MohammedDr Class Static OOP

Static class variables are not used as often as ordinary non-static variables,

but they are important in many situations. Figure 6.9 shows how static

variables compare with automatic variables.

Separate Declaration and Definition

Static member data requires an unusual format. Ordinary variables are

usually declared (the compiler is told about their name and type) and

defined (the compiler sets aside memory to hold the variable) in the same

statement. Static member data, on the other hand, requires two separate

statements. The variable’s declaration appears in the class definition, but

. Ahmed Hashim MohammedDr Class Static OOP

the variable is actually defined outside the class, in much the same way as

a global variable.

Why is this two-part approach used? If static member data were defined

inside the class (as it actually was in early versions of C++), it would

violate the idea that a class definition is only a blueprint and does not set

aside any memory.

Putting the definition of static member data outside the class also serves to

emphasize that the memory space for such data is allocated only once,

before the program starts to execute, and that one static member variable is

accessed by an entire class; each object does not have its own version of

the variable, as it would with ordinary member data. In this way a static

member variable is more like a global variable.

It’s easy to handle static data incorrectly, and the compiler is not helpful

about such errors. If you include the declaration of a static variable but

forget its definition, there will be no warning from the compiler.

Everything looks fine until you get to the linker, which will tell you that

you’re trying to reference an undeclared global variable. This happens

even if you include the definition but forget the class name (the foo:: in the

STATDATA example).

