Exercise(1): - Given Example

- 1- Quotient ring is a field
- 2- Quotient ring is an integral domain
- 3- Quotient ring has no zero divisors
- 4- Quotient ring is a comm..ring with identity but is not field

<u>Solution(1):- ($Z_{28}/(\overline{7})$, +,.) is field</u>

Since, $((\bar{7}), +_{7}, \cdot_{7})$ is a maximal ideal in a ring $(\mathbb{Z}_{28}, +_{28}, \cdot_{28})$, then by Th.(2-15) we get $(\mathbb{Z}_{28}/(\bar{7}), +, \cdot)$ is field.

<u>Solution(2):-</u> $(Z_{28}/(\overline{7}), +, .)$ is an integral domain, since $(Z_{28}/(\overline{7}), +, .)$ is field field [Since, $((\overline{7}), +_{7}, ._{7})$ is a maximal ideal in a ring $(Z_{28}, +_{28}, \cdot_{28})$, then by Th.(2-15) we get $(Z_{28}/(\overline{7}), +, .)$ is field] and by Th(1-4) [every field is an integral domain], so we get $(Z_{28}/(\overline{7}), +, .)$ is an integral domain .

Solution(3):-

 $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is a quotient ring has no zero divisor, since $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is an integral domain, because $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is field field [Since,($(\overline{7}), +_{7}, ._{7}$) is a maximal ideal in a ring $(\mathbb{Z}_{28}, +_{28}, \cdot_{28})$,then by Th.(2-15) we get $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is field] and by Th(1-4) [every field is an integral domain], so we get $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is an integral domain then by definition of integral domain we get $(\mathbb{Z}_{28}/(\overline{7}), +, .)$ is a quotient ring has no zero divisor .

Solution (4):-

 $(Z_{20}/(\overline{10}), +, .)$ is a comm.ring with identity, but is not integral Domain,since $(Z_{20}/(\overline{10}), +, .)$ has zero divisors