Introduction to Compiler 1

Principles, Techniques, & Tools

—

References
"Compilers Principles, techniques, & tools", by Alfred Aho,
second edition, Pearson Addison Wesley, 2007.

Compiler and Translators

Translator is a program that takes as input a program written in one
programming language (the source language) and produces as output

a program in another language (the object or target language).

Source I I Object
Program Translator Program

Types of translator

There are four types of translator according to the source

language as well as target language:

Compiler is a translator that translates a high-level language
program such as FORTRAN, PASCAL, C™, to low-level language
program such as an assembly language or machine language.

Note: The translation process should also report the presence of

errors in the source program.

High-level I : Low-level
language Compiler language

(machine 01)

— 4 yuaidwnd | draolxdl

Introduction to Compiler 2

Others Translators:

Interpreters are another kind of translators. An Interpreter is a

translator that effectively accepts a source program and executes it
directly, without, producing any object code first. It does this by
fetching the source program instructions one by one, analyzing them
one by one, and then "executing" them one by one.

1- Smaller (advantage)

2- Slower (disadvantage)
High-level Intermediate code
language _’I Interpreter I > directly execution)

An Assembler is a translator that translates the assembly language
program (mnemonic program) to machine language program.

Assembly I I Machine
Program Assembler Program

Low-level language Low-level language

Pre-processor: is a Translator Translate program written by H.L.L
Into an equivalent program in H.L.L.

High-level High-level
Ianguage_’l Pre-processor I_’Language

Why do we Need Translations?

If there are no translators then we must programming in machine
language. With machine language we must be communicate directly
with a computer in terms of bits, registers, and very primitive
machine operations. Since a machine language program is nothing

more than a sequence of 0's and 1's, programming a complex

— 4 yuaidwnd | draolxdl

Introduction to Compiler 3

algorithm in such a language is terribly tedious and fraught with

mistakes.

Why we Write Programs in High-Level Lanquage?

We write programs in high-level language (advantages of high-level
language) because it is:

1) Readability: high-level language will allow programs to be
written in the same ways that used in description of the
algorithms.

2) Portability: High-level languages can Dbe run without
changing on a variety of different computers.

3) Generality: Most high-level languages allow the writing of a
wide variety of programs, thus relieving the programmer of the
need to become expert in many languages.

4) Brevity: Programs expressed in high-level languages are often
considerably shorter (in terms of their number of source lines)
than their low-level equivalents.

5) It's easy in the Error checking process.

The Structure of a Compiler

The process of compilation is so complex to be achieved in
one single step, either from a logical point of view or from an
implementation point of view. For this reason it is partition into a
series of sub processes called Phases.

The different phases of a compiler are as follows

Analysis Phases:

1. Lexical Analysis

2. Syntax Analysis

— 4 yuaidwnd | draolxdl

Introduction to Compiler

3. Semantic Analysis

Synthesis Phases:

4. Intermediate Code generator

5. Code Optimization

6. Code generation..

The typical compiler consists of several phases each of which

passes its output to the next phase plus symbol table manager and an

error handler as shown below:

Source Program

|

Lexical
Analysis

v

Syntax
Analysis

v

Symbol Table
management

Semantic
Analysis

v

[\

Intermediate
Code Generating

%

Error
Handler

v

Code
Optimization

A

¥

Code
Generating

|

Target Program

— 4 yuaidwnd | draolxdl

Introduction to Compiler 5

Phases of a Compiler.

Lexical Analyzer (Scanner): It is the first phase of the complier

and also called scanner, which represent the interface between
source program and the compiler. where the Lexical will read the
source program by one letter at a time and decomposed it into group
of letters called TOKEN that is logically interrelated between them.
This token represent string of characters that can be processed
together as a logical input.

In others words, lexical Separates characters of the source language
program into groups (sets) that logically belong together. These
groups are called Tokens.

Tokens are Keywords, Identifiers, Operator Symbols, and
Punctuation Symbols. The output of the analyzer is stream of tokens,

which is passed to the syntax analyzer.

Tokens: groups of characters of source language program logically

belong together.

Type of tokens
There are five types of token as below:
Type of
ol Examples

Main , int , cin , if , for ,
Keyword cout , while’, else

Identifier A,B,C,sum, al, b45

Constant 5,125,1.3 ,0.3E5, 200

Operator (arithmetic) : +,-,*,/, "

(logical) : >, <,=,<=,>=

punctuation |, ;: "' ()% @ .{ }

— 4 yuaidwnd | draolxdl

Introduction to Compiler 6

Syntax_Analyzer (Parser): Groups tokens together into syntactic

structures called Expressions. Expressions might further be
combined to form Statements. Often the syntactic structure can be
regarded as a Tree (parse tree) whose leaves are the tokens. The
interior nodes of the tree represent strings of tokens that logically
belong together.

Every programming language has rules that prescribe the syntactic
structure of well —formed programs. Syntax analysis takes an out of

lexical analyzer and produce a large tree call parse tree

Semantics:. is a term used to describe "meaning”, and so the

constraint analyzer is often called the static semantic analyzer, or
simply the semantic analyzer. Semantic analyzer takes the output of
syntax analyzer and produces another tree.The output of the syntax
analyzer and semantic analyzer phases is sometimes expressed in the
form of a Abstract Syntax Tree (AST). This is a very useful
representation, as it can be used in clever ways to optimize code
generation at a later phase.

It is Recently added a stage to analyze in terms of sentence
meaning, in other words, will reject the sentence in the case of the
discovery of the meaning of error (Note: The sentence can be true in
terms of the syntax but have no meaning).

For example the English sentence : "The man eat the house " This is
in the natural language, put in programming languages can either

write inter correct the hand, but wrong in the sense rules .

— 4 yuaidwnd | draolxdl

Introduction to Compiler 7

Intermediate _Code Generator: Create a stream of simple

instructions. Many style of intermediate code are possible. One
common style uses instructions with one operator and a small
number of operands.
This phase is used structures built in the previous stages and convert
them into intermediate codes by using a most famous meta language
such as:

- Postfix notation

- Polish notation
In some versions be enforceable as is the case in the interpreter for

the BASIC language and commands interpreter of the DOS

operating system.

Code Optimization: Is an optional phase designed to improve the

intermediate code so that the ultimate object program runs faster

and/or takes less space.

Code _Generation: In a real compiler this phase takes the output

from the previous phase and produces the object code, by deciding
on the memory locations for data, generating code to access such
locations, selecting registers for intermediate calculations and

indexing, and so on.

Table Management: Portion of the compiler keeps tracks of the

name used by the program and records essential information about
each, such as its type integer, real, ... etc. the data structure used to

record this information is called a Symbolic Table.

— 4 yuaidwnd | draolxdl

Introduction to Compiler 8

Error Handler: One of the most important functions of a compiler

Is the detection and reporting of errors in the source program. The
error messages should allow the programmer to determine exactly
where the errors have occurred. Whenever a phase of the compiler
discovers an error, it must report the error to the error handler, which
Issues an appropriate diagnostic message.

Passes of Compiler

The previous phases showing the main parts of the compiler
theoretically, either in the case of the application must merge
combine more than one phase in round one and this is called one
pass. Each pass will read the output of the previous pass (except for
the first pass) that reads the source program.

In the case of integrating more than one stage in one round will lead
to interference in the work of these stages through the control
structure between these stages.

The influential factor in the number of stages per pass depends on
the structure of the source language , the translator , who owns
multi-pass uses less memory space of a translator who is in round
one single pass. On the other hand , the multi-pass type slower than
the another because each stage reads and writes in the intermediate
file leads to the slow work of the translator . Must be a balance
between the number of stages in a single pass and between the speed
of the compiler. And on this basis can be lexical in one pass with
syntax or separated.

There are several reason for separating analysis portion of compiler

into Lexical and Parsing, some of these reasons are:

— 4 yuaidwnd | draolxdl

Introduction to Compiler)

1. Simpler design is the most important consideration. This
separation allows us to simplify at least one of these tasks. For
example removing white space in the lexical analysis make it
easier from dealing with it as syntactic units in parser.

2. Compiler efficiency is improved. A separate lexical analyzer
allows us toapply specialized techniques that serve only the
lexical task, not the job of parsing. In addition, specialized
buffering techniques for reading input characters can speed up
the compiler significantly

3. Compiler portability is enhanced. Input — device — specific

peculiarities can be restricted to the lexical analyzer.

Notice: If phase lexical built with syntax In this case, the Lexical in
the form of a subroutine assistant called from the phase of syntax
that followed , and if their separation will store the results of

intermediate file, this file is called symbol table.

— 4 yuaidwnd | draolxdl

Introduction to Compiler

lexical

Syntax

I< >II

Semantic

Intermediate code

generation

Code Optimization

Y

10

=4 jaddwad| Lrolxdl

IntroductiontoComptler 11

s el ¢ el A alil) e pa il A U o) 31 0 280l Jal el ()
.ONE PasS (o 138 g3aa) 5al a8 4l je e SSI cOMbIne zed g Gukail
zeebiall 1y) (W) Al sadl lae) Led A8lud) A gl il yae 1585 g A g S
.source program |

intermediate o s <ale @ik ge Y sl o BN G () (5250 138
. Read from , Write in) 4w | iy 5 48 5 file
Jalpall oda Jue A& dalad) gapwsaal gddsa s o e S mad Al &
(dalpall da (8 Hlans S 3k e
rad)) IS e s saal sl Al gall 8 Jalall sae 8 igall dalall ¢
ax il (e JB) 3 513 Aaliee adiuy multi-pass saie &Y g lliag (3l an yiall
multi-pass g sl G A 4ali e s single pass sas) s Al s IS ¢ 55 (63
e o day (A a3 sy cale 8 Qi 8 A 0 JS A4V AU (e eday)
o5 pa il de o g saal sl A gall (8 Jal jall dae (4 45)] sall Cand aa i)
Lagins Jiady () 5 syntax ge saal sl S lexical oS o) OSar ol 18
1) 58 U lla syntax Aas e o lexical Aa e Jual e

Lexical 41 o5 Al oda 8 syntax as dawe lexical s e <l 1) ;4daadlk
Juadll 251305 ¢ Lgali Al syntax s e (e oo diun ebue o 8 o5 JS& e
= intermediate file e Arws als Ao Adai gl AU G A A Lagin

(Os<) Js2a) symbol table <aldl 12a

— 4 yuaidwnd | draolxdl

Introduction to Compiler

Example of the Compilation Process

Consider the following sentence is segment from source program:

Position: = initial + rate * 60

! !

Lexical Analysis

! |

id1 :=id2 + id3 * 60

| |

Syntax Analysis

i ¢
()

oo

() &
¢ ¢

[Semantic Analysis]

| |

12

— 4 yuaidwnd | draolxdl

Introduction to Compiler

) |

[Intermediate Analysis]

| {

tempz:=integer to real (60)
temp2:=ids * temp:
temps:=idz + temp2

id1:= temps

¥ ¥

[Code optimization]

\’ v

tempz:=idsz * 60.0
id1:= id2+ temps

! !

[Code generation]

! !

movf ids ,R2
mulf #60.0 ,R>

13

— 4 yuaidwnd | draolxdl

Introduction to Compiler 14

movf id2 ,R1

addf R1,R2

movf R2,id1
How Lexical Work

Input Buffering:
The lexical analyzer scans the characters of the source

program one at a time to discover tokens; it is desirable for the

lexical analyzer to read its input from an input buffer.

We have two pointers one marks to the beginning of the token
begin discovered. A look-ahead pointer scans a head of the

beginning point, until the token is discovered

AL s gl) 8 an)5 o Ayl Rl il s i aill Jlas o s
e e DAY 5 start pointer Al jdise cewn Js¥I (ppsise) Zlisg 4lé
&Y Ul 4 LS ook ahead pointer L3 aasil)

Input Buffer

For example, if we have the following statement written by HLL

program

=4 jaddwad| Lrolxdl

IntroductiontoCompiler 15

IF (5.EQ.sum) Goto 100

|

Look ahead

sl s goe L
S Sl gy (1) Gl Gl JY1 85a g ol dlae o
A |F Rl Ll i o e Jlaall o Cann (sl e iy i alal) &yl
L s sy 4o 55 a5 w5 fokend) R el oo Al gl
s (il sl Aol S5 JB &4 &5 symbol table sl Jses
Y s el o3 N5 E N5 a0 Y geay Cigoall Ay pands A a5l
s Floating point format fssa: csiSe o, 18 b dsi paill dlas J1)

LAl ddadil) drva

. floating point 4eilal) adasil)

1.73x103=1.73E3
0.173 x 10*=.173E4
0.0173 x 10°=0.0173E5
) tokend) aulsy) asy ey il e Jlaall iy La Q 1 Lavie s

S 3 LS dma)5 Jal)) il e I 1350 5 5 Ll e duan (e)il

token type

IF keyword

(punctuation

5 Constant

EQ. Logical Operator
Sum Identifier

) punctuation
Goto keyword

1000 Constant

=4 jaddwad| Lrolxdl

