
Introduction to Compiler

 -الجامعة المستنصريه

1

References

"Compilers Principles, techniques, & tools", by Alfred Aho,

second edition, Pearson Addison Wesley, 2007.

Compiler and Translators

Translator is a program that takes as input a program written in one

programming language (the source language) and produces as output

a program in another language (the object or target language).

Types of translator

There are four types of translator according to the source

language as well as target language:

Compiler is a translator that translates a high-level language

program such as FORTRAN, PASCAL, C++, to low-level language

program such as an assembly language or machine language.

Note: The translation process should also report the presence of

errors in the source program.

Translator
Source

Program

Object

Program

Compiler
High-level

language

Low-level

language

(machine 01)

Introduction to Compiler

 -الجامعة المستنصريه

2

Others Translators:

Interpreters are another kind of translators. An Interpreter is a

translator that effectively accepts a source program and executes it

directly, without, producing any object code first. It does this by

fetching the source program instructions one by one, analyzing them

one by one, and then "executing" them one by one.

1- Smaller (advantage)

2- Slower (disadvantage)

An Assembler is a translator that translates the assembly language

program (mnemonic program) to machine language program.

Pre-processor: is a Translator Translate program written by H.L.L

 Into an equivalent program in H.L.L.

Why do we Need Translations?

If there are no translators then we must programming in machine

language. With machine language we must be communicate directly

with a computer in terms of bits, registers, and very primitive

machine operations. Since a machine language program is nothing

more than a sequence of 0's and 1's, programming a complex

Assembler
Assembly

Program

Machine

Program

Low-level language Low-level language

Interpreter
High-level

language

Intermediate code

(directly execution)

Pre-processor
High-level

language

High-level

Language

Introduction to Compiler

 -الجامعة المستنصريه

3

algorithm in such a language is terribly tedious and fraught with

mistakes.

Why we Write Programs in High-Level Language?

We write programs in high-level language (advantages of high-level

language) because it is:

1) Readability: high-level language will allow programs to be

written in the same ways that used in description of the

algorithms.

2) Portability: High-level languages can be run without

changing on a variety of different computers.

3) Generality: Most high-level languages allow the writing of a

wide variety of programs, thus relieving the programmer of the

need to become expert in many languages.

4) Brevity: Programs expressed in high-level languages are often

considerably shorter (in terms of their number of source lines)

than their low-level equivalents.

5) It's easy in the Error checking process.

The Structure of a Compiler

The process of compilation is so complex to be achieved in

one single step, either from a logical point of view or from an

implementation point of view. For this reason it is partition into a

series of sub processes called Phases.

The different phases of a compiler are as follows

Analysis Phases:

1. Lexical Analysis

2. Syntax Analysis

Introduction to Compiler

 -الجامعة المستنصريه

4

3. Semantic Analysis

Synthesis Phases:

4. Intermediate Code generator

5. Code Optimization

6. Code generation..

The typical compiler consists of several phases each of which

passes its output to the next phase plus symbol table manager and an

error handler as shown below:

Target Program

Symbol Table

management

Lexical

Analysis

Syntax

Analysis

Semantic

Analysis

Intermediate

Code Generating

Code

Optimization

Code

Generating

Source Program

Error

Handler

Introduction to Compiler

 -الجامعة المستنصريه

5

Lexical Analyzer (Scanner): It is the first phase of the complier

and also called scanner, which represent the interface between

source program and the compiler. where the Lexical will read the

source program by one letter at a time and decomposed it into group

of letters called TOKEN that is logically interrelated between them.

This token represent string of characters that can be processed

together as a logical input.

In others words, lexical Separates characters of the source language

program into groups (sets) that logically belong together. These

groups are called Tokens.

Tokens are Keywords, Identifiers, Operator Symbols, and

Punctuation Symbols. The output of the analyzer is stream of tokens,

which is passed to the syntax analyzer.

Tokens: groups of characters of source language program logically

belong together.

Type of tokens

There are five types of token as below:

Type of
token Examples

Keyword Main , int , cin , if , for ,
cout , while , else

Identifier A , B , C , sum , a1 , b45

Constant 5 , 12.5 , 1.3 , 0.3E5 , 200

Operator
(arithmetic) : + , - , * , / , ^

(logical) : > , < , = , <= , >=

punctuation , ; : " ' () $ @ . { }

Phases of a Compiler.

Introduction to Compiler

 -الجامعة المستنصريه

6

Syntax Analyzer (Parser): Groups tokens together into syntactic

structures called Expressions. Expressions might further be

combined to form Statements. Often the syntactic structure can be

regarded as a Tree (parse tree) whose leaves are the tokens. The

interior nodes of the tree represent strings of tokens that logically

belong together.

Every programming language has rules that prescribe the syntactic

structure of well –formed programs. Syntax analysis takes an out of

lexical analyzer and produce a large tree call parse tree

Semantics:. is a term used to describe "meaning", and so the

constraint analyzer is often called the static semantic analyzer, or

simply the semantic analyzer. Semantic analyzer takes the output of

syntax analyzer and produces another tree.The output of the syntax

analyzer and semantic analyzer phases is sometimes expressed in the

form of a Abstract Syntax Tree (AST). This is a very useful

representation, as it can be used in clever ways to optimize code

generation at a later phase.

It is Recently added a stage to analyze in terms of sentence

meaning, in other words, will reject the sentence in the case of the

discovery of the meaning of error (Note: The sentence can be true in

terms of the syntax but have no meaning).

For example the English sentence : "The man eat the house " This is

in the natural language, put in programming languages can either

write inter correct the hand, but wrong in the sense rules .

Introduction to Compiler

 -الجامعة المستنصريه

7

Intermediate Code Generator: Create a stream of simple

instructions. Many style of intermediate code are possible. One

common style uses instructions with one operator and a small

number of operands.

This phase is used structures built in the previous stages and convert

them into intermediate codes by using a most famous meta language

such as:

- Postfix notation

- Polish notation

 In some versions be enforceable as is the case in the interpreter for

the BASIC language and commands interpreter of the DOS

operating system.

Code Optimization: Is an optional phase designed to improve the

intermediate code so that the ultimate object program runs faster

and/or takes less space.

Code Generation: In a real compiler this phase takes the output

from the previous phase and produces the object code, by deciding

on the memory locations for data, generating code to access such

locations, selecting registers for intermediate calculations and

indexing, and so on.

Table Management: Portion of the compiler keeps tracks of the

name used by the program and records essential information about

each, such as its type integer, real, … etc. the data structure used to

record this information is called a Symbolic Table.

Introduction to Compiler

 -الجامعة المستنصريه

8

Error Handler: One of the most important functions of a compiler

is the detection and reporting of errors in the source program. The

error messages should allow the programmer to determine exactly

where the errors have occurred. Whenever a phase of the compiler

discovers an error, it must report the error to the error handler, which

issues an appropriate diagnostic message.

Passes of Compiler

The previous phases showing the main parts of the compiler

theoretically, either in the case of the application must merge

combine more than one phase in round one and this is called one

pass. Each pass will read the output of the previous pass (except for

the first pass) that reads the source program.

In the case of integrating more than one stage in one round will lead

to interference in the work of these stages through the control

structure between these stages.

The influential factor in the number of stages per pass depends on

the structure of the source language , the translator , who owns

multi-pass uses less memory space of a translator who is in round

one single pass. On the other hand , the multi-pass type slower than

the another because each stage reads and writes in the intermediate

file leads to the slow work of the translator . Must be a balance

between the number of stages in a single pass and between the speed

of the compiler. And on this basis can be lexical in one pass with

syntax or separated.

There are several reason for separating analysis portion of compiler

into Lexical and Parsing, some of these reasons are:

Introduction to Compiler

 -الجامعة المستنصريه

9

1. Simpler design is the most important consideration. This

separation allows us to simplify at least one of these tasks. For

example removing white space in the lexical analysis make it

easier from dealing with it as syntactic units in parser.

2. Compiler efficiency is improved. A separate lexical analyzer

allows us toapply specialized techniques that serve only the

lexical task, not the job of parsing. In addition, specialized

buffering techniques for reading input characters can speed up

the compiler significantly

3. Compiler portability is enhanced. Input – device – specific

peculiarities can be restricted to the lexical analyzer.

Notice: If phase lexical built with syntax In this case, the Lexical in

the form of a subroutine assistant called from the phase of syntax

that followed , and if their separation will store the results of

intermediate file, this file is called symbol table.

Introduction to Compiler

 -الجامعة المستنصريه

10

lexical

Syntax

Semantic

Intermediate code

generation

Code Optimization

Code Generation

Intermediate File

Intermediate File

Introduction to Compiler

 -الجامعة المستنصريه

11

ي ح لللي فللان المراحللا البلل تبي اللزا االللياي الرمزبللزي لامنللرل لللا ال، حزللي ال، ر للي اللل

. one passاكثر لا لرحاي فلي للللي حاحلوه ح لسا بلم combineالنطازق فزجب دلج

ج الارن ل لي سلف برأ لخرل ت الجللي الب تبي له) عوا الجللي ااحل (الني برأكا لل

 .source programالمصور

 intermediateح سا سزؤدي ال ان الن، قا تزا الجلات عا طر ق لاف حسطي

file (كنب فزه ح برأ ل،ه Read from , Write in .

 حلوه سلزؤدي الل لوايا فلي عملا لسح المراحلافي ح لي دلج اكثر لا لرحاي في للللي حا

 عا طر ق زكا سزطره تزا سح المراحا.

صلور ان الع لا المؤثر فلي علود المراحلا فلي الجلللي اللاحلوه عنملو عال زكلا الا لي الم

ي ذاكلره اقلا للا المنلرل بلنخو لبل ح multi-passالمنرل السي مناك للات لنعوده

 multi-pass. حللا ن حزلي ايلرا فل ن ال،لل single pass السي كلن تشكا لللي حاحوه

اتلل ي لللا الثلل ني انلله كللا لرحاللي بللرأ ح كنللب فللي لاللف حسللطي للؤدي اللل تطلليي عمللا

. حعال المنرل . فزجب الملازني تزا عود المراحا في الجللي اللاحوه حتزا سرعي المنرل

 .اح ان فصا تز،هم syntaxفي لللي حاحوه لع lexical سا ااس س مكا ان كلن

 :ثلاث فلامو ، ك syntaxعا لرحاي lexicalع،و فصا لرحاي

 Lexicalففي سح الح لي كلن الـ syntaxلولجي لع lexicalللاح ي: اذا ك نت لرحاي

ا النلي ازهل حاذا ل الفصل syntaxعا شكا رح زا فرعي لب عو بنوع لا لرحالي

 بلم intermediate file،ن مج اللسلطزي عال لالف حسلطي بلم تز،هم سزن يين ال

)لوحل الرللز(. symbol table سا الماف

Introduction to Compiler

 -الجامعة المستنصريه

12

 Example of the Compilation Process

Consider the following sentence is segment from source program:

 Id2

 + Id1

 :

=

 *

 Id3 60

Syntax Analysis

Lexical Analysis

Position: = initial + rate * 60

id1 := id2 + id3 * 60

Semantic Analysis

Introduction to Compiler

 -الجامعة المستنصريه

13

temp1:=integer to real (60)

temp2:=id3 * temp1

temp3:=id2 + temp2

id1:= temp3

 temp1:= id3 * 60.0

 id1:= id2+ temp1

 movf id3 ,R2

 mulf #60.0 ,R2

intermediate Analysis

Code generation

Introduction to Compiler

 -الجامعة المستنصريه

14

 movf id2 ,R1

 addf R1,R2

 movf R2,id1

How Lexical Work

Input Buffering:

The lexical analyzer scans the characters of the source

program one at a time to discover tokens; it is desirable for the

lexical analyzer to read its input from an input buffer.

We have two pointers one marks to the beginning of the token

begin discovered. A look-ahead pointer scans a head of the

beginning point, until the token is discovered

سلك ل بل لحاا ال،ص تبرايه ال،ص المويا تطر بي حرف حاحو في اللقت اللاحو

 لؤشر حااير بم start pointerف نه حن ج ال لؤشر ا ااحل بم لؤشر الاوا ي

 كم في الشكا اا ي look ahead pointerالنبو للأل

For example, if we have the following statement written by HLL

program

Introduction to Compiler

 -الجامعة المستنصريه

15

 الية عمل محلل النص

 ح اوأ المؤشر الث ني (I) بل لحاا ال،ص تلضع المؤشر ااحل عا الحرف

سلك ل IF ت لنحرك ال ال حن بف ع،و البلس (حزث ان المحاا سلف كنشف انه كامي

له ال فزن حو و نلعه ح ن ادي token صاي تزا المؤشر ا مثا الف ن الحرحف الف

 اوأ ث ن نبا لؤشر الاوا ي ال البلس المفنلح (ح symbol tableلوحل الرللز

رحاي ا حال سح الم Eث ال 5المؤشر ااير تفحص تبزي الحرحف حصلاً ال الرق

اح Floating point formatتصز ي زال لحاا ال،ص نلقع ت نه برأ رق لكنلب

 صز ي ال،بطي الع ممي .

 : floating pointال،بطي الع ممي

 1.73 × 103 ≡ 1.73E3

0.173 × 104 ≡ .173E4

0.0173 × 105 ≡ 0.0173E5

اوأ لز token ، نلقف المحاا عا الاحث حسلف رلع ال توا ي الـ Qحع،ول برأ

 م في الشكاكح كسا ال نه ي ال،ص اح العا ره الارلجزي 5البرايه لا لو و عا انه

token type
IF keyword

(punctuation

5 Constant

.EQ. Logical Operator

Sum Identifier

) punctuation

Goto keyword

1000 Constant

