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 Errors  type 

We know that programs can contain errors at many different levels. 

For example, errors can be 

1. Lexical errors include misspellings of identifiers, keywords, or 

operators -e.g., missing quotes around text intended as a string. 

2. Syntactic errors include misplaced semicolons or extra or 

missing braces; that is, '((" or ")." 

3. Semantic errors include type mismatches between operators 

and operands. 

4. logical, such as an infinitely recursive call  

 

Syntax Analysis 

Parser: 
 

The parser has two functions: 
 

1) It checks that the tokens appearing in its input, which is the 

output of the lexical analyzer, occur in patterns that are 

permitted by the specification for the source language.  

2) It also imposes on the tokens a tree-like structure that is used 

by the subsequent phases of the compiler. 

 

Example: if a Pascal program contains the following expression: 

A + /B 
Then after lexical analysis this expression might appear to the 

syntax analyzer as the token sequence 

id1 + / id2 
On seeing the /, the syntax analyzer should detect an error situation, 

because the presence of these two adjacent operators violates the 

formation rules of a Pascal expression. 

Example: identifying which parts of the token stream should be 

grouped together:  

A/B*C 
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Parse Tree: 

                                         

 

 

 

 

 

 
The Role of the Parser 
 

In the compiler model, the parser obtains a string of tokens from the 

lexical analyzer, as shown in figure below, and verifies that the 

string can be generated by the grammar for the source language.  

The parser must be reported syntax errors  clearly fashion. 

By design, every programming language has precise rules that 

prescribe the   syntactic structure of well-formed programs. In C, for 

example, a program is made up of functions, a function out of 

declarations and statements, a statement out of expressions, an 

expression out of tokens and so on. The syntax of programming 

language constructs can be specified by context-free grammars or 
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BNF (Backus-Naur Form) notation . Grammars offer significant 

benefits for both language designers and compiler writers 

 

 

Context-Free Grammars (CFG) 
 

Many programming language constructs have an inherently 

recursive structure that can be defined by context-free grammars. 

For example, we might have a conditional statement defined by a 

rule such as 
 

If S1 and S2 are statements and E is an expression, then 

        "If E then S1 else S2" is a statement. 
 

This form of conditional statement cannot be specified using the 

notation regular expressions. 
 

Could also express as:  stmt    if expr then stmt else stmt 
 

Such as a role is called syntactic variables, stmt to denote the class 

of statements and expr the class of expressions. 

Components of Context-Free Grammars (CFG) 
 

A context free grammar (CFG for short) consists of terminals, 

nonterminals, a start symbol, and productions. 

1) Terminals are the basic symbols from which strings are formed. 

The word "token" is a synonym for "terminal" when we are 

talking about grammars for programming languages. 

2) Nonterminals are syntactic variables that denote sets of strings. 

3) One nonterminal is distinguished as the Start Symbol.    

4) The set of Productions where each production consists of a 

nonterminal, called the left side followed by an arrow, followed 
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by a string of nonterminals and/or terminals called the right 

side. 
 

Example: The grammar with the following productions defines 

simple arithmetic expressions. 

expr expr op expr   

expr (expr) 

expr – expr 

expr id 

   op + 

   op – 

   op * 

   op / 

   op ↑  
 

In this grammar, the terminal symbols are 

id + - * /  ↑ ( ) 

The nonterminal symbols are expr and op, and expr is the start 

symbol. 

The above grammar can be rewriting by using shorthands as: 

  E EAE | (E) | -E | id  

  A + | - | * | / | ↑ 
 

where E and A are nonterminals, with E the start symbol. The 

remaining symbols are terminals. 

Derivations and Parse Trees 
 

How does a context-free grammar define a language? The central 

idea is that productions may be applied repeatedly to expand the 

nonterminals in a string of nonterminals and terminals. For example, 

consider the following grammar for arithmetic expressions: 

  E  E + E \ E * E | (E) \ -E \ id   ……………… (1.1). 

The nonterminal E is an abbreviation for expression. The production      

E  -E signifies that an expression preceded by minus sign is 

also an expression. In the simplest case can replace single E by -E. 

We can describe this action by writing 
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                  E –E   which is read as "E derives -E" 

We can take a single E and repeatedly apply productions in any 

order to obtain a sequence of replacements. For example, 

E -E -(E) -(id) 
 

We call such a sequence of replacements a derivation of - (id) from 

E. This derivation provides a proof that one particular instance of an 

expression is the string - (id). 

Example: The string -(id + id) is a sentence of grammar (1.1) 

because there is the derivation 

    

         

 

 

Parse Tree may be viewed as a graphical representation for 

derivations that filters out the choice regarding replacement order. 

Each interior node of the parse tree is labeled by some 

nonterminal A, and the children of the node are labeled, from left to 

right, by the symbols in the right side of the production by which 

this A was replaced in the derivation.  

The leaves of the parse tree are labeled by nonterminals or 

terminals and, read from left to right. For example, the parse tree for 

-(id+id) that implied by the derivation of previous example. 

 

 

 

 

 

 

 

- 
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Example: Let us again consider the arithmetic expression grammar 

(1.1), with which we have been dealing. The sentence id + id * id 

has the two distinct leftmost derivations: 

    

 

 

 

With the two corresponding parse tree shown in figure below:  

  

 

 

 

 

 

 

 

 

 

 

 

Ambiguity 

A grammar that produces more than one parse tree for some 

sentence is said to be ambiguous. Put another way, an ambiguous 

grammar is one that produces more than one leftmost or more than 

one rightmost derivation for some sentence.  In this type, we cannot 

uniquely determine which parse tree to select for a sentence.  

 

Example: Consider the following grammar for arithmetic 

expressions involving +, -, *, /, and↑ (exponentiation) 

E * E 

E + E * E  

id + E * E 

id + id * E 

id + id * id 

 
 

E E + E 

id + E  

id + E * E 

id + id * E 

id + id * id 

 
 

E 

Two parse trees for id + id * id 
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  E E+E | E-E | E*E | E/E | E↑E | (E) | -E | id  

This grammar is ambiguous.  

 

 

Eliminate Ambiguity 

Sometimes an ambiguous grammar can be rewritten to eliminate the 

ambiguity and transform the ambiguous grammar to unambiguous 

grammar. As an example, we shall eliminate the ambiguity from the 

following "dangling-else" grammar: 

        Stat if cond then stat 

                          | if cond then stat else stat 

                          | other-stat  

 

Here "other-stat" stands for any other statement. According to this 

grammar, the compound conditional statement   

 

 

Has the parse tree like the following figure:  

 

 

if C1 then S1 else if C2 then S2 else S3 
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This grammar is ambiguous since the string    

 

 

 

Has the two parse tree shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above ambiguous grammar transform to the unambiguous 

grammar: 

               stat   matched-stat 

                                | unmatched-stat 

 matched-stat if cond then matched-stat else matched-stat 

                                | other-stat 

unmatched-stat if cond then stat 

                                | if cond then matched-stat else unmatched-stat  
 

if C1 then if C2 then S1 else S2 
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This grammar generates the same set of string for ambiguous 

grammar, but it allows only one parsing for above string.   

Regular Expression vs. Context-Free Grammar 

Every language that can be described by a regular expression can 

also be described by Context-Free Grammar.  

 

Example: Design CFG that accept the RE = a (a|b)*b 

S  aAb 

A  aA | bA |    

  

Example: Design CFG that accept the RE = (a|b)*abb 

S  aS | bS | aX 

X  bY 

Y  bZ 

Z    

 

Example: Design CFG that accept the RE =anbn where n ≥ 1. 
 

S  aXb 

X   aXb |   

Example: Design CFG Singed Integer number. 
 

S  XD 

X  + | - 

D  0D | 1D | 2D | 3D | 4D | 5D | 6D | 7D | 8D | 9D |   

 

Elimination of Left Recursion 

A grammar is Left Recursive if it has a nonterminal A such that 

there is a derivation A 
  Aα for some string α. Top-Down 
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Parsing methods cannot handle left recursive grammars, so a 

transformation that eliminates left recursion is needed.  

In the following example, we show how the left recursion pair of 

productions A   Aα | β could be replaced by the non-left-

recursive productions: 

       A   Aα | β 

           

 

       A   β A'  

      A'   α A' |   

without changing the set of strings derivable from A. This rule by 

itself suffices in many grammars. 
 

Example: Consider the following grammar for arithmetic 

expressions. 

     E  E+T | T  

     T  T*F | F 

     F  (E) | id 

 

Eliminating the immediate left recursion (productions of the form   

A   Aα) to the productions for E and then for T, we obtain 

     E  TE' 

     E'   +TE' |        

     T  FT' 

     T'  *FT' |   

     F  (E) | id 
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Note: No matter how many A-productions there are, we can 

eliminate immediate left recursion from them by the following 

technique. First, we group the A-productions as 

      A   Aα1 | Aα2 | Aα3 |……| Aαm | β1 | β2 | β3 |…… | βn 

where no β, begins with an A.   Then, we replace the A-productions 

by:  

    A   β1A' | β2A' | β3A' |……. |βnA'  

   A'   α1A' | α2A' | α3A' |……. | αmA' |  
 

The nonterminal A generates the same strings as before but is no 

longer left recursive. 
 

Note: This procedure eliminates all immediate left recursion from 

the A and A' productions, but it does not eliminate left recursion 

involving derivations of two or more steps.  

For Example, consider the grammar: 

S  Aa | b 

A  Ac | Sd |   

The nonterminal S is left- recursive because S  Aa  Sda, but 

is not immediately left recursive. Algorithm in below will 

systematically eliminate left recursion from grammar. 

Algorithm: Eliminating left recursion. 

Input: Grammar G with no cycles or  -productions. 

Output: An equivalent grammar with no left recursion. 

Method: Apply the algorithm below to G. Note that the resulting non 

left-recursive grammar may have  -productions.  

Arrange the nonterminals in some order A1, A2,……. An. 

for i: = 1 to n do 

       for j : = 1 to i-1 do begin 

             Replace each production of the form Ai   Aiγ by the        

productions Ai  δ1γ | δ2γ | δ3γ |……| δkγ,  
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               Where Aj  δ1 | δ2 | δ3 |……| δk are all the current  

                Aj-productions;   

           Eliminate the immediate left recursion among Aj-productions  

       End  
 

Let us apply this procedure to previous grammar. We substitute the 

S-productions in A  Sd to obtain the following A-productions.  

A  Ac | Aad | bd |   

Eliminating the immediate left recursion among the A-productions 

yields the following grammar. 

S  Aa | b 

A  bdA' | A'  

A'  c A' | adA' |   

 

Left Factoring 

Left factoring is a grammar transformation that is useful for 

producing a grammar suitable for predictive parsing. The basic idea 

is that when it is not clear which of two alternative productions to 

use to expand a nonterminal A, we may be able to rewrite the,        

A-productions to defer the decision until we have seen enough of the 

input to make the right choice. For example, if we have the two 

productions 

if A   αβ1 | αβ2 are two A-productions, and the input begins with 

a nonempty string derived from α, we do not know whether to 

expand A to αβ1or to αβ2. However, we may defer the decision by 

expanding A to αA'. Then, after seeing the input derived from α, we 

expand A' to β1 or to β2. That is left-factored. 

 

    A   αβ1 | αβ2 
   A   αA' 

   A'   β1 | β2 
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Algorithm : Left factoring a grammar. 

Input: Grammar G. 

Output: An equivalent left-factored grammar. 

Method: For each nonterminal A find the longest prefix α common 

to two or more of its alternatives. If α ≠ , i.e., there is a nontrivial 

common prefix, replace all the A productions                                  

A   αβ1 | αβ2|…..| αβ2| γ where γ represents all alternatives that 

do not begin with α by 

       A   αA'| γ 

      A'   β1 | β2 | ………| βn 

 

Here A' is a new nonterminal.   Repeatedly apply this transformation 

until no two alternatives for a nonterminal have a common prefix.        

Example:  

   S   iEtS | iEtSeS | a 

E   b  
 

Left-factored, this grammar becomes: 

     S    iEtSS' | a 

    S'  eS |   

   E  b 

Example:  
 

       A  aA| bB | ab | a | bA 

Solution:   

       A  aA'| bB' 

      A'   A | b |   

      B'  B | A 


