
 Recognition of Tokens

 الجامعة المستنصريه

24

Recognition of Tokens

The question is how to recognize the tokens?

Example: assume the following grammar fragment to generate a

specific language:

if expr then stmt | if expr then stmt else stmt | stmt

term relop term | term expr

id | num term

where the terminals if, then, else, relop, id, and num generate sets of

strings given by the following regular definitions:

 if if

 then then

 else else

 relop <| <=| =| <>| >| >=

 id letter(letter|digit)*

 num digits optional-fraction optional-exponent

Where letter and digits are as defined previously.

For this language fragment the lexical analyzer will recognize

the keywords if, then, else, as well as the lexemes denoted by relop,

id, and num. To simplify matters, we assume keywords are

reserved; that is, they cannot be used as identifiers. The num

represents the unsigned integer and real numbers of Pascal.

In addition, we assume lexemes are separated by white space,

consisting of no null sequences of blanks, tabs, and newlines. The

lexical analyzer will strip out white space. It will do so by

comparing a string against the regular definition ws, below.

delim blank| tab | newline

ws delim+
If a match for ws is found, the lexical analyzer does not return a

token to the parser.

 Recognition of Tokens

 الجامعة المستنصريه

25

Transition Diagrams (TD)

As an intermediate step in the construction of a lexical

analyzer, we first produce flowchart, called a Transition diagram.

Transition diagrams depict the actions that take place when a lexical

analyzer is called by the parser to get the next token.

 The TD uses to keep track of information about characters

that are seen as the forward pointer scans the input. it dos that by

moving from position to position in the diagram as characters are

read.

Components of Transition Diagram

1. One state is labeled the Start State; it is the

initial state of the transition diagram where control resides when

we begin to recognize a token.

2. Positions in a transition diagram are drawn as circles

and are called states.

3. The states are connected by Arrows, called edges.

Labels on edges are indicating the input characters.

4. The Accepting states in which the tokens has been found.

5. Retract one character use * to indicate states on which this

input retraction.

 start

 Recognition of Tokens

 الجامعة المستنصريه

26

Example: A Transition Diagram for the token relation operators

"relop" is shown in Figure below:

Example: A Transition Diagram for the identifiers and keywords:

6

0 start <

 3

1

 4

 8

 7

 2

 5

=

=

Other

Other

>

=

>

*

*

 Return (relop,LE)

 Return (relop,NE)

 Return (relop,LT)

 Return (relop,EQ)

 Return (relop,GE)

 Return (relop,GT)

 Transition Diagram for relation operators

9 start
10 11

letter other

Letter or digit

*

 Transition Diagram for identifiers and keywords

 Recognition of Tokens

 الجامعة المستنصريه

27

Example: A Transition Diagram for Unsigned Numbers in Pascal:

digit+(. digit+|)(E(+|-|)digit+|) num

Treatment of White Space (WS):

Nothing is returned when the accepting state is reached; we merely

go back to the start state of the first transition diagram to look for

another pattern.

digit
12 start

13 . 14
digit

15
E

16

+or-
17

digit
18

other
19

*

digit digit digit

digit E

digit
23

other
24

digit

digit
21 .

digit

22 20 start

digit
26

other
27

digit

25 start
*

Transition Diagram for unsigned numbers in Pascal

delim
29

other
30

delim

28 start
*

Transition Diagram for White Space

 Recognition of Tokens

 الجامعة المستنصريه

28

 Finite Automata (FA)

It a generalized transition diagram TD, constructed to compile a

regular expression RE into recognizer.

Recognizer for a Language: is a program that takes a string X as an

input and answers "Yes" if X is a sentence of the language and "No"

otherwise.

Note: Both NFA and DFA are capable of recognizing what regular

expression can denote.

Nondeterministic Finite Automata (NFA)

NFA: means that more than one transition out of a state may be

possible on a same input symbol.

Also a transition on input (-Transition) is possible.

FA

Nondeterministic Finite Automata

(NFA)

Deterministic Finite Automata

(DFA)

1

a

b

a a
2

2

4

0

3

1
a

b

 Recognition of Tokens

 الجامعة المستنصريه

29

A nondeterministic finite automation NFA is a mathematical model

consists of

1) A set of states S;

2) A set of input symbol, ∑, called the input symbols alphabet.

3) A set of transition to move the symbol to the sets of states.

4) A state S0 called the initial or the start state.

5) A set of states F called the accepting or final state.

Example: The NFA that recognizes the language (a | b)*abb is

shown below:

Example: The NFA that recognizes the language aa*|bb* is shown

below:

b

0 start
 3 1

a b
2

b

a

0

3

1
a

b

4

2

a

b

 Recognition of Tokens

 الجامعة المستنصريه

30

Deterministic Finite Automata (DFA)

A deterministic finite automation (DFA, for short) is a special case

of a non-deterministic finite automation (NFA) in which

1. No state has an -transition, i.e., a transition on input , and

2. For each state S and input symbol a, there is at most one edge

labeled a leaving S.

A deterministic finite automation DFA has at most one transition

from each state on any input.

Example: The following figure shows a DFA that recognizes the

language (a|b)*abb.

The Transition Table is:

State a b

0 1 0

1 1 2

2 1 3

3 1 0

a

0
start

 3 1
a b

2
b

b

a

a

b

 Recognition of Tokens

 الجامعة المستنصريه

31

Conversion of an NFA into a DFA

It is hard for a computer program to simulate an NFA because

the transition function is multivalued. The algorithm that called the

subset construction will convert an NFA for any language into a

DFA that recognizes the same languages.

Algorithm: (Subset construction): constructing DFA from NFA.

Input: NFA N.

Output: DFA D accepting the same language.

Method: this algorithm constructs a transition table Dtran for D.

Each DFA state is a set of NFA states and we construct Dtran so

that D will simulate "in parallel" all possible moves N can make on

a given input string.

It use the operations in below to keep track of sets of NFA states (s

represents an NFA state and T a set of NFA states).

1) -closure (s0) is the start state of D.

2) A state of D is accepting if it contains at least one accepting

state in N.

Operations Description

 -closure(s)
Set of NFA states reachable from NFA state s on

 - transitions alone.

 -closure(T)
Set of NFA states reachable from some NFA state s

in T on -transitions alone.

Move(T, a)
Set of NFA states to which there is a transition on

input symbol a from some NFA state s in T.

 Recognition of Tokens

 الجامعة المستنصريه

32

Algorithm: (Subset construction):

Initially, -closure(s0) is the only state in Dstates and it is

unmarked;

 while there is an unmarked state T in Dstates do begin

 mark T;

 For each input symbol a do begin

 U: = (-closure (move (T, a)) ;

 if U is not in Dstates then

 add U as an unmarked state to Dstates;

 Dtran [T, a]: = U

 End

End

We construct Dstates, the set of states of D, and Dtran, the transition

table for D, in the following manner. Each state of D corresponds to

a set of NFA states that N could be in after reading some sequence

of input symbols including all possible -transitions before or after

symbols are read.

Algorithm: Computation of -closure

Push all states in T onto slack;

Initialize -closure (T) to T;

While slack is not empty do begin

 Pop t, the top clement, off of stack;

 For each state u with an edge from t to u labeled do

 If u is not in -closure (T) do begin

 Add u to -closure (T);

 Push u onto stack

 End

End

A simple algorithm to compute -closure (T) uses a stack to hold

states whose edges have not been checked for -labeled transitions.

 Recognition of Tokens

 الجامعة المستنصريه

33

Example: The figure below shows NFA N accepting the language

(a | b)*abb.

Sol: apply the Algorithm of Subset construction as follow:

1) Find the start state of the equivalent DFA is -closure (0),

which is consist of start state of NFA and the all states

reachable from state 0 via a path in which every edge is

labeled .

 A= {0, 1, 2, 4, 7}

2) Compute move (A, a), the set of states of NFA having transitions

on a from members of A. Among the states 0, 1, 2, 4 and 7,

only 2 and 7 have such transitions, to 3 and 8, so

 move (A, a)={3, 8}

 Compute the -closure (move (A, a)) = -closure ({3, 8}),

 -closure ({3, 8}) = {1, 2, 3, 4, 6, 7, 8} Let us call this set B.

a
10 7 8 9

 5
b

1

4

2
a

0

3

6 b b

A
start

B
a

 Recognition of Tokens

 الجامعة المستنصريه

34

3) Compute move (A, b), the set of states of NFA having transitions

on b from members of A. Among the states 0, 1, 2, 4 and 7,

only 4 have such transitions, to 5 so

 move (A, b)={5}

 Compute the -closure (move (A, b)) = -closure ({5}),

 -closure ({5}) = {1, 2, 4, 5, 6, 7} Let us call this set C.

 So the DFA has a transition on b from A to C.

4) We apply the steps 2 and 3 on the B and C, this process continues

for every new state of the DFA until all sets that are states of the

DFA are marked.

The five different sets of states we actually construct are:

 A = {0, 1, 2, 4, 7}

 B = {1, 2, 3, 4, 6, 7, 8}

 C = {1, 2, 4, 5, 6, 7}

 D = {1, 2, 4, 5, 6, 7, 9}

 E = {1, 2, 4, 5, 6, 7, 10}

State A is the start state, and state E is the only accepting state.

The complete transition table Dtran is shown in below:

 Transition table Dtran for DFA

STATE

INPUT SYMBOL

 a

b

 A

B

C

 B

B

D

 C

B

C

 D

B

E

 E

B

C

A start
C

b

 Recognition of Tokens

 الجامعة المستنصريه

35

Also, a transition graph for the resulting DFA is shown in below.

It should be noted that the DFA also accepts (a | b)*abb.

From a Regular Expression to an NFA

Now give an algorithm to construct an NFA from a regular

expression. The algorithm is syntax-directed in that it uses the

syntactic structure of the regular expression to guide the construction

process.

Algorithm: (Thompson's construction):

Input: a regular expression R over alphabet ∑.

Output: NFA N accepting L(R).

1- For , construct the NFA

Here i is a start state and f a accepting state. Clearly this NFA

recognizes { }.

A
start

B
a b

D
b

 E

a

C

a

b

a

b

b

a

i start f

 Recognition of Tokens

 الجامعة المستنصريه

36

2- For a in ∑, construct the NFA

Again i is a start state and f a accepting state. This machine

recognizes {a}.

3- For the regular expression a | b construct the following composite

NFA N(a | b).

4- For the regular expression ab construct the following composite

NFA N(ab).

5- For the regular expression a* construct the following composite

NFA N(a*).

i start f
a

i
start f

a

b

i

a

b

 f

i
start a

 f

 Recognition of Tokens

 الجامعة المستنصريه

37

Example: let us use algorithm Thompson's construction to

construct the following regular expressions:

1) RE = (ab)*

2) RE= (a | b)*a

3) RE= a (bb| a)*b

a

b

 i
a

f

i
a b

 f

b

 a

b

 f

b a
i

 Recognition of Tokens

 الجامعة المستنصريه

38

4) RE= a* (a | b)

Lexical Errors

What if user omits the space in “Fori”?

No lexical error, single token IDENT (“Fori”) is produced instead of

sequence For, IDENT (“i”).

Typically few lexical error types

1) the illegal chars, for example:

 Writ@ln (x);

2) unterminated comments, for example:

 {Main program

3) Ill-formed constants

How is a Scanner Programmed?

1) Describe tokens with regular expressions.

2) Draw transition diagrams.

3) Code the diagram as table/program.

i
start a

a

b

 f

