
Disk Performance Optimization

By

Lecturer: Ameen A.Noor

Introduction

• processors & memory speeds have increased more rapidly
than those of hard disk.

• processes requesting data from disk tend to experience long
service delay.

• we discuss how to optimize disk performance by recording disk
requests to increase throughput, decrease response time &
reduce the variance of response times. We also discuss how
OSs reorganize data on disk & exploit buffers & caches to boost
performance.

• Finally, we discuss Redundant Arrays of Independent Disks
(RAIDs), which improve disk access times & fault tolerance by
servicing requests using multiple disks at once.

Actuator

Direction of

movement

Spindle

(rotating thousands of

revolutions per minute)

Platter (2 surfaces)

Track

Track

Platter (2 surfaces)

Read/write head

(2 for each platter)

Cylinder (4 tracks)

general structure of hard disk

The disk storage may consist of several platters & each has
a separate read/write moving-head. All heads are fixed to
the same actuator & hence move together to select
certain cylinder. The cylinder is a set of tracks on all
surfaces. Usually, at one time, only one head is active &
deals with one track of the whole cylinder. This means that
OS has to select the proper head to read/write (r/w) data.
Each track is divided to several sectors as shown in fig 10.2
each sector is of 512 byte size.

platter

Sector

(512 byte)

Track

Sector

(512 byte)

Tracks & Sectors of Disk

it is clear that for the OS to R/W data from disk, it needs to:
1- Specify the proper surface containing the data & hence the proper
moving head.
2- Specify the track & sectors containing the data on that surface.
3- Instruct actuator to move head to the proper track. This movement
takes time which is called "Seek Time" & its average value is in the range
of few milliseconds (e.g. 7 msec).
4-The platter has to be rotating & the head should wait for the proper
sector in the track to get the data.
This time depends on revolution speed & its average value is half of one
revolution period & is usually of few milliseconds value (e.g. 4 msec).
This time is called "Latency Time".
5- When the head is on the proper sector, it starts reading/writing data &
also this process takes time depending on number of sectors to be read.

It is clear that a few milliseconds are necessary to R/W data from

 the disk while the CPU can execute millions of instructions in thatv

 time.

data

Head

Disk arm

Seek Time

Rotational

latency time

Transmission time

The new track

Current track

components of disk access

Disk Capacity
Capacity: maximum number of bits that can be stored

– Vendors express capacity in units of gigabytes (GB), where
1 GB = 109 Bytes (Lawsuit pending! Claims deceptive
advertising)

Capacity is determined by these technology factors:

– Recording density (bits/in): number of bits that can be
squeezed into a 1 inch linear segment of a track

– Track density (tracks/in): number of tracks that can be
squeezed into a 1 inch radial segment

– Areal density (bits/in2): product of recording and track density

 Computing Disk Capacity
Capacity = (# bytes/sector) x (avg. # sectors/track) x

 (# tracks/surface) x (# surfaces/platter) x

 (# platters/disk)

Example:

– 512 bytes/sector

– 1000 sectors/track (on average)

– 20,000 tracks/surface

– 2 surfaces/platter

– 5 platters/disk

Capacity = 512 x 1000 x 80000 x 2 x 5

 = 409,600,000,000

 = 409.6 GB

Why Disk Scheduling is Necessary

Many processes can generate requests for reading & writing data
on a disk simultaneously. Because these processes sometimes
makes requests faster than they can be serviced by the disk,
waiting lines or queues build up to hold disk requests. Some early
computing systems simply serviced these request on a "First
Come First Served FCFS" basis, in which the earliest arriving
request is serviced first. FCFS exhibits a random seek pattern in
which successive requests can cause time consuming seeks from
the innermost to the outermost cylinders (tracks). To reduce the
time spent seeking records, it seems reasonable to reorder the
request queue in some manners other than FCFS. This process,
called disk scheduling, can significantly improve throughput

The two most common types of scheduling are "Seek optimizing"
& "Rotational Optimizing". Because seek times are usually greater
than latency times, most scheduling algorithms concentrate on
minimizing total seek time for a set of requests.

Disk Scheduling Strategies

• The strategies are evaluated by the following
criteria:

• - Throughput: The number of requests serviced per
unit time. The maximum number is the better.

• - Mean response time: The average time spent
waiting for a request to be serviced. The minimum
time is the better.

• - Variance of response time: The difference between
the request waiting time andthe mean response
time. The minimum variance is the better.

1 First Come First Served (FCFS) Disk Scheduling
This has been already discussed & it suffers from long seek time & hence low
throughput especially under heavy loads.

2 Shortest Seek Time First (SSTF)
Ithe next request to be serviced is the one that is closest to the R/W head &
thus incurs the shortest seek time.
The main problem is the possibility of indefinite postponement for the
innermost & outermost tracks especially under heavy loads i.e. many requests
are coming all the time.
3 Scan Disk Scheduling
Here, the disk head moves from the outer track to the inner & then in the
opposite direction. The request to be serviced is the one that its track is ahead
of the head in the motion direction.
This means that the requests coming in front of the head in the motion
direction are serviced first.
The scheduling may suffer indefinite postponement or long waits for requests
of innermost and outermost tracks under heavy load.

4 C-Scan Disk Scheduling
C-Scan mean circular scan & it is similar to SCAN but the head doesn't
service requests when moving in the opposite direction i.e. it service
requests in only one direction & hence decrease the possibility of
indefinite postponement of outerside tracks.

5 Other scheduling strategies
There are also other strategies such as:
Fscan
N-Step Scan
Look Scan
C-Look Scan
Shortest Latency Time First (SLTF)
Shortest Positioning Time First (SPTF)
Shortest Access Time First (SATF)

Ex: a disk queue with requests for I/O to blocks on cylinders
 23, 89, 132, 42, 187 With disk head initially at 100

1- FCFS 23, 89, 132, 42, 187

 0 23 42 89 100 132 187

77+66+43+90+145=421
If the requests for cylinders 23 and 42 could be serviced together,
total head movement could be decreased substantially.

2- SSTF 23, 89, 132, 42, 187

 0 23 42 89 100 132 187

 11+43+55+145+19=273

3- SCAN 23, 89, 132, 42, 187

 0 23 42 89 100 132 187

 11+47+19+23+132+55=287

4- C-SCAN 23, 89, 132, 42, 187

 0 23 42 89 100 132 187 199

 11+47+19+23+199+12+55=366

Head movement can be reduced if the request for cylinder 187 is serviced
directly after request at 23 without going to the disk 0

5- LOOK 23, 89, 132, 42, 187

 0 23 42 89 100 132 187 199

 11+47+19+109+55=3241
Compared to SCAN, LOOK saves going from 23 to 0 and then back. Most
efficient for this sequence of requests

 Caching & Buffering

• Many systems maintain a "disk cache buffer", which is a region of
main memory that the OS reserves for disk data. In one context, the
reserved memory acts as cache, allowing processes quick access to
data that would otherwise need to be fetched from disk. The reserved
memory also acts as a buffer, allowing the OS to delay writing
modified data until the disk experiences a light load or until the disk
head is in a favorable position to improve I/O performance.

• The disk cache buffer presents several challenges to OS designers

such as:
 - Size of cache buffer
 - Replacement strategy
 - Inconsistency of data when power or system fail.

Many of today's hard disk drives maintain an independent
high-speed buffer cache (on board cache) of several
megabytes it's not related to main memory i.e. not part of
it (i.e. can't be addressed by CPU directly).
Also, some hard disk controllers (e.g. SCSI, RAID) maintain
their own buffer cache (normal RAM) separate from main
memory.
ALL buffers are used to enhance the disk performance i.e.
increase the speed of data retrieval.

Redundant Arrays of Independent Disks
(RAID)

• The disk includes several platters. Each platter has two R/W heads. ALL
the heads are mounted on one actuator & hence move together.

• the OS determines the location of data on which surface of which
platter & instructs the proper head to R/W.

• At any one time, only one head is used for reading or writing i.e. it is
not possible to make multiple accesses with several heads.

In other words, the disk has multiple heads but only one of them is used
at any one time.

• The file is usually stored on one surface of one platter only unless it is
very large.

• The only objective of this disk structure is to get large storage volume.

In the RAID structure, the philosophy is completely different from the
nonRAID as it has the following features:

- The disk includes several platters & heads as before but each head
here has its own actuator and hence can move independently of the
other heads. This will enable multiple reads & writes to be carried out
at the same time & hence faster disk response.

- The file may be stored on one platter or on several ones & hence it is
possible to read/write several parts of the same file at the same time &
this means fast R/W.

- Reliability issue is handled here and hence we find out that an error
correcting code (ECC) is being used & hence more storage is needed
and this is reason for the term "Redundancy". The redundancy will help
in correcting errors & hence the RAID system will be "fault tolerant" in
this case.

In RAID systems we use the following terms:
Data Striping: entail dividing data into fixed size blocks called "strips".
Contiguous strips of a file are typically placed on separate disks so that
request for file data can be serviced using multiple disks at once, which
improves access times.

Stripe: consists of the set of strips at the same location on each disk of the
array.

Fine grained strips: small size strips & this tend to spread file data across
several disks & hence reduce access time.

Coarse grained strips: large size strips & this enable some files, to fit
entirely on one strip & hence the access time is as in the Non-RAID
system, for that file, however, several requests for several files can be
serviced together (Simultaneously).

RAID interface

(controller)

strip1 strip2 strip3 strip4

strip1 strip2 strip3 strip4
stripe

Strip1+ strip2 + strip3+

strip4

File

Disks

Strips & stripe in RAID systems

1-RAID Level :uses striped disk array with no fault tolerance and hence has
no redundancy. The disk contains data only & there is no ECC data.
In level multiple reads &writes are possible.
The striping level (size) is a block.
Level is sometimes not considered as RAID as it has no redundancy

2 -RAID Level1 (Mirroring)

This level employs disk mirroring (shadowing) to provide redundancy, so
each disk in the array is duplicated. Stripes are not implemented in level1 &
hence multiple access for the same file is only possible on reading but not on
writing. On writing, the same data has to be written on both disks (the
original & the mirror) but on reading, 2 different parts of the same file can
be read at the same time from the original & mirror disks. The mirror
technology enhances reliability & restricted multiple access but doubling the
cost.

3- RAID Level2

RAID level2 arrays are striped at the bit level, so each strip stores one bit.
This means that adjacent bits of file are stored on different disks. Level2
arrays are not mirrored, which reduces the storage overhead incurred by
Level1.
The fault tolerance is achieved here by using hamming error correcting
codes (hamming ECCs). The error code bits are stored on separate disks
(parity disks).
Of course, each stripe of one bit size on data disks has a stripe of one bit
size on parity disks. This means that each group of data bits has a
corresponding group of ECC bits.
The clear problem here is that if the OS wants to write few bits of the
group (stripe), it has to read all data stripes first & then modify the
necessary data bits & then calculate the ECC bits & at last store the new
data & ECC bits. This is called "read-modify-write" cycle

4 - RAID Level3
RAID level3 stripes data at the bit or byte level but use parity checks for
fault tolerance instead of Hamming. In parity check, we use only one bit
(even or odd parity) & this bit does not locate the place of error (as
incase of Hamming) but indicates only its existence. When the error
occurs, the OS will inform the user immediately who has to find out the
erroneous disk and replace it. The data on the faulty disk can be
regenerated automatically with the help of other data disks & the parity
disk. The advantages of such system:

1- Large storage.
2- Fault tolerance with one extra disk (one parity disk).
3- Multiple access for one file is possible and hence fast access time.
Of course, multiple access for several files is not possible as any file
request will occupy all of the disks.

5 - RAID Level4
RAID Level4 systems are striped using fixed size blocks (typically much larger
than a byte) & use one disk for parity (even or odd parity). The difference with
level3 is that the file may occupy fraction of disks & not all of them (remember
the coarse grained stripes) & hence multiple requests for multiple files may be
possible at the same time. Here, we should remember that when reading data
from disks, it is not always necessary to read parity bits as these bits are
stored not for error detection but mainly for error correction (of one bit –
usually one disk may be faulty-).
6 - RAID Level5
RAID Level5 arrays are striped at the block level & a parity check (even or odd)
is used like in level4. The difference with level4 is that the parity bits are not
located on one disk but distributed throughout the arrays of disks. This means
that disk1 carries parity bit1, disk2 carries parity bit2, & so on. The advantage
of this level is that multiple writes (writes for several files) are possible
because the parity bits are not stored on one disk as the case of level4

7 - Other RAID Levels
There are other levels such as:
RAID Level6
RAID Level10+1
RAID Level10
RAID Level10+3, 0+5, 50, 1+5, etc.

