
Ch8
Virtual Memory

By

Lecturer: Ameen A.Noor

Virtual Memory: Basic Concepts

• Virtual memory is a technique that allows the
execution of processes that may not be completely in
memory.

• One major advantage of this scheme is that
programs can be larger than physical memory.

• There are two types of addresses in virtual memory
systems: those referenced by processes (virtual
addresses) and those available in main memory
(physical or real addresses).

Virtual memory systems contain special-purpose
hardware called the memory management unit
(MMU) that quickly maps virtual addresses to
physical addresses.
A key to implementing virtual memory systems is
how to map virtual addresses to physical addresses
as process execute. Dynamic address translation
(DAT) mechanisms convert virtual addresses to
physical addresses during execution.

Paging

• Paging is a memory management scheme that
eliminates the need for contiguous allocation
of physical memory.

• This scheme permits the physical address
space of a process to be non – contiguous.

• The physical memory is broken into fixed-sized
blocks called frames.

• Logical memory is also broken into blocks of
the same size called pages.

When a process is to be executed, its pages are loaded into
any available memory frames from the backing store. The
backing store is divided into fixed-sized blocks that are of the
same size as the memory frames.
The hardware support for paging is illustrated in Figure (1).
Every address generated by the CPU is divided into two parts:
Page number (p): Number of bits required to represent the
pages in Logical Address Space.
Page offset (d): Number of bits required to represent
particular word in a page or page size of Logical Address
Space
The page number is used as an index into a page table. The
page table contains the base address of each page in physical
memory. This base address is combined with the page offset
to define the physical memory address that is sent to the
memory unit.

Protection

• Memory protection in a paged environment is
accomplished by protection bits that are associated
with each frame.

• these bits are kept in the page table. One bit can define
a page to be read-write or read-only.

• Every reference to memory goes through the page
table to find the correct frame number. At the same
time that the physical address is being computed, the
protection bits can be checked to verify that no writes
are being made to a read-only page.

• An attempt to write to a read-only page causes a
hardware trap to the operating system

a valid-invalid bit

• When this bit is set to "valid," this value
indicates that the associated page is in the
process' logical-address space, and is thus a
legal (or valid) page. If the bit is set to
"invalid", this value indicates that the page is
not in the process' logical-address space.
Illegal addresses are trapped by using the
valid-invalid bit. The operating system sets this
bit for each page to allow or disallow accesses
to that page.

Segmentation

• A Memory Management technique in which
memory is divided into variable sized chunks
which can be allocated to processes.

• Each chunk is called a Segment. Each segment
consists of contiguous locations.

• The segments need not be the same size nor
must be placed adjacent to one another in
main memory.

A table stores the information about all such
segments and is called segment table.
It maps two dimensional Logical address into one
dimensional Physical address. Each entry of the
segment table has a segment base and a
segment limit.
The segment base contains the starting physical
address where the segment resides in memory,
whereas the segment limit specifies the length of
the segment.

Every address generated by the CPU is divided into two parts:
Segment number (s): Number of bits required to represent the
segment.
Segment offset (d): Number of bits required to represent the size
of the segment.

 (Segmentation hardware)

As an example, consider the situation shown in
Figure (5). We have five segments numbered
from 0 through 4. The segments are stored in
physical memory as shown. The segment table
has a separate entry for each segment, giving
the beginning address of the segment in
physical memory (or base) and the length of
that segment (or limit). For example, segment 2
is 400 bytes long and begins at location 4300.

Demand Paging
 • A demand-paging system is similar to a paging system

with swapping .Processes reside on secondary memory
(which is usually a disk). When we want to execute a
process, we swap it into memory.

• When a process is to be swapped in, the pager guesses
which pages will be used before the process is swapped
out again. Instead of swapping in a whole process, the
pager brings only those necessary pages into memory.
Thus, it avoids reading into memory pages that will not
be used anyway, decreasing the swap time and the
amount of physical memory needed.

With this scheme, we need some form of hardware
support to distinguish between those pages that are in
memory and those pages that are on the disk. The valid
invalid bit scheme can be used for this purpose.
When this bit is set to "valid," this value indicates that the
associated page is both legal and in memory. If the bit is
set to "invalid," this value indicates that the page either is
not valid or is valid but is currently on the disk.
The page-table entry for a page that is brought into
memory is set as usual, but the page-table entry for a
page that is not currently in memory is simply marked
invalid, or contains the address of the page on disk.

if p = 0 no page faults
if p = 1, every reference is a fault

Page Fault

• When the process tries to access a page that
was not brought into memory (access to a
page marked invalid) causes a page-fault trap.

• The paging hardware, in translating the
address through the page table, will notice
that the invalid bit is set, causing a trap to the
operating system. This trap is the result of the
operating system's failure to bring the desired
page into memory,

The procedure for handling this page fault

1- Check the page table (usually kept with the process control
block) for this process, to determine whether the reference
was a valid or invalid memory access.
2- If the reference was invalid, a page fault exception is raised.
3- The operating system must locate logical page in secondary
memory.
4- Schedule a disk operation to read the desired page and
swap into memory into a free frame.
5- When the disk read is complete, we modify the page table
to indicate that the page is now in memory (set valid bit).
6- Restart the instruction that was interrupted by the illegal
address trap.

Page Replacement

• If no frame is free, we find one that is not
currently being used and free it. We can free a
frame by writing its contents to swap space,
and changing the page table to indicate that
the page is no longer in memory. We can now
use the free frame to hold the page for which
the process faulted.

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page
replacement algorithm to select a victim frame

3. Bring the desired page into the (newly) free
frame; update the page and frame tables

4. Restart the process

Page Replacement Algorithms
In an operating systems that use paging for
memory management, page replacement
algorithm are needed to decide which page
needed to be replaced when new page comes in.
Whenever a new page is referred and not present
in memory, page fault occurs and Operating
System replaces one of the existing pages with
newly needed page. Different page replacement
algorithms suggest different ways to decide which
page to replace. The target for all algorithms is to
reduce number of page faults.

1. FIFO Page Replacement

• A FIFO replacement algorithm associates with each
page the time when that page was brought into
memory.

• When a page must be replaced, the oldest page is
chosen.

• Notice that it is not strictly necessary to record the
time when a page is brought in. We can create a FIFO
queue to hold all pages in memory. We replace the
page at the head of the queue. When a page is
brought into memory, we insert it at the tail of the
queue.

Example: Suppose three pages can be in memory at

a time per process.Process references pages: 7,0,1,2,

0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 , what is the number of

page fault?

The number of page fault = 15

2. Optimal Page Replacement

• In this algorithm, pages are replaced which
are not used for the longest duration of time
in the future.

• Use of this page-replacement algorithm
guarantees the lowest possible page fault rate
for a fixed number of frames.

The number of page fault = 9

Example: Suppose we have the following process

references pages:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

What is the number of page fault if we use three page frames?

3. LRU Page Replacement

• In least recently used (LRU) replacement
algorithm page will be replaced which is least
recently used.

• When a page must be replaced, LRU chooses
that page that has not been used for the
longest period of time.

Example: Suppose three pages can be in memory at a time

per process. Process references pages: 7,0,1,2,0,3,0,4,2,3,0,3,

2,1,2,0,1,7,0,1 , what is the number of page fault?

The number of page fault = 12

