a- Banker’s Algorithm

This Alg. Could be used in a banking system to ensure that the bank never allocates its
available cash in such a way that it can no longer satisfy the needs of all its customers.

When a new a process enters the system it must declare the maximum number of instances of
each resource type that it may need.

- The maximum must be < total number of resources in the system.

-When a user requests a set of resources must be leave the system in a safe state if the
resources are allocated otherwise the process must wait until some other process releases
enough resources.

Several data structures must be maintained to implement banker’s algorithm
Let n be the number of processes in the system and m be the number of resource types . We
need the following data structures:

- Available : A vector of length m indicates the number of available resources of each

type.
available . If available [j] = k these are k instances of resource type R;

- Max : An nym matrix defines the maximum demand of each process . If max]i,j] =k,
then process P; may request at most k instances of resource type R;

- Allocation : An n,m the resources currently allocated to each process . If allocation
[i,j]] = k then process p; is currently allocated process p; is currently allocated 1
instances of resources of resource type R;

- Need : An nym indicates the remaining resource need of each process . If need[i,j] = k
then process p; may need k more instances of resource type R; to complete its task .

Need [i,J]] = Max [i,j] — Allocation [i,j]

1- If request i < Need i go to step 2 otherwise raise an error since the process has exceeded
its maximum claim.

2- If request i < Available go to step 3 . Otherwise p; must wait since the resources are not
available .

3- The system pretends to have allocated the requested resources to process p; by modifying
the state as follows:

Available := Available — Requesti ,
Allocationi := Allocationi + Requesti ,

Needi:= Needi — Requesti,

If the resulting resource allocation state is safe the transaction is completed and process p; is
allocated its resources. If the new state is unsafe the p; must wait for request i and the old
resource allocation state is restored.

c- Safety Algorithm
The algorithm for finding out whether or out a system is in a safe state can be described as
follows:

1- Let work and finish be vectors of length m and n respectively.

Initialize work := Available and Finish [i] := False forI=1,2, ..., n

2- Find an i such that both

- Finish [i] = false

- Need i< work

If no such i exits, go to step 4

3- Work := work +allocation | Finish[i] := true go to step2

4- If Finish [i] = true for all I then the system is in a safe state

This algorithm may require an order of myn? operations to decide whether a state is safe.
Example:

Consider a system with five processes {po,p1,p2,...} and three resource types {A,B,C} .
Resource type A has 10 instances. Resource type B has 5 instances, and resource type ¢
has 7 instance. Suppose that at time T, the following snapshot of the system has been
taken.

Allocation | Max | Available
ABC |ABC| ABC
010 753 332 Po

200 322 Py
302 902 P,
211 222 P,
002 433 P,
The content of the matrix Need is defined to be max-Allocation and is:
Need
ABC
Po 743
P, 122
P, 600
P, 011
b, 431

The system is in the safe state if the processes executed in the sequence (ps1, Ps, P4 ,P2, Po)-
Suppose now that process p; requests one additional instance of resource type A and two
instance of resources type C so request 1= (1,0, 2)

To decide whether this request can be immediately granted we first check that

Request 1 < Available (thatis, (1,0,2) < (3,3,2)) which is true we then pretend that this
request has been fulfilled and we arrive at the following new state.

Allocation | Max | Available
ABC |ABC| ABC
010 743 332 Po

302 020 Py
302 600 P,
211 011 Ps
002 431 Py

By execute the safety Alg. We find the sequence (p1, Pz, P4, Po , P2) satisfies our safety
requirements . Hence we can immediately grant the request of process p;

If p4 request for (3, 3, 0) . The request can not granted since the resources are not available
. Request 1> Available . If p, request (0, 2, 0) can not granted even though the resources
are available since the resulting state is unsafe.

Deadlock Detection

If a system does not employ some protocol that ensures that no deadlock will never occur.
Then a detection and recovery scheme must be implemented . The system can use an
algorithm to examines the state of the system periodically to determine whether has occurred
. If so the system must recover from the deadlock by providing :
a- Maintain information about the current allocation of resources to processes and
outstanding request.
b- Provide an Alg. That use the above information to determine whether the system has
entered the deadlock state.
The detection Alg. Employs several time — varying data structures that are very similar to
those used in the Banker’s Algorithm :
- Available
- Allocation
- Request . An nym matrix indicating the current request of each process.
If Request [i,j] = k then p; is requesting k more instances of resource type r;
The detection Alg. Simply investigates every possible allocation sequence for the
processes that remain to be completed.
The detection Alg . as follows:
1- Let work and finish be vectors of length m and n respectively . Initialize
Work := Available , fori=1,2,3, ..., n. If allocation # 0 the Finish [i] := false.
Otherwise , Finish[i] := false.
2- Find an index i such that :
- Finish [i] = false , and
- Requesti<work .
If no such I exits go to step 4.
3- Work :=work +Allocation i
Finish [i] := true
Go to step2
4- If Finish [i] = false , for some 1, 1< 1 < n then the system is in a deadlock state. More
over , if Finish [i] = false then process p; is deadlocked.

Example
Consider a system with five processes {po , pP1 ,... p4} and three resources types { A=7

instance , B =2 , C=6 instance} suppose that at time T, we the following resource
allocation state.

Allocation | Max | Available
ABC |ABC| ABC
010 000 000 Po

200 202 P
303 000 P,
211 100 P
002 002 Py

If we execute the detection Alg. We find the system is not in a deadlock state and the
sequence < po, P2, Pz, P1 P4 > Will result in finish [i] = true for all i .

Suppose now that process p2 makes one additional request for an instance of type C. the
Request matrix is modified as follows :

Po
Py
P2
Ps

Ps

Need
ABC
000
202
001
100
002

We claim that the system is now deadlocked . Although we can reclaim the resources held by
process po the number of available resources is not sufficient to fut fill the requests of the
other processes . Thus a deadlock exist , consisting of processes < p;, p., pz and p; >.

Single Instance of each resource type

The detection Alg. is of order myn® . If all resources have only a single instance we can
define a faster Alg. we will use a variant of the resource allocation graph called a wait
— for graph . This graph is obtained from the resource allocation graph by removing
the nodes of type resource and collapsing the appropriate edges. Where the edge from
pi is waiting for process p; to release a resource that it needs.

An edge (p; ,p;) exists in a wait — for graph if and only if the resource RAG contains
two edges (pi, rq) and (rq , pi) for some resource , see fig bellow

Request —»

Assignment \

0
7y
Y
0

(b)
Fig: RAG (a) and its wait — for graph (b)

A deadlock exists in the system if and only if the wait — for graph contains a cycle.

- Recovery from deadlock

When a detection Alg. determines that a deadlock exists the system must recover from
the deadlock .

There are two options for breaking a deadlock
a- Process termination by killing a process , two methods:
- Kill all deadlocked processes.
- Kill one process at a time until the deadlock cycle is eliminated.

b- Resource preemption, to eliminate deadlocks using resource preemption we can
preempt some resources from processes and give them to other processes until the
deadlock cycle is broken .

If preemption is required in order to deal with deadlocks then three issues need to
be addressed:

Selecting a victim: which process and which resources .

Rollback : if we preempt a resource from a process what should be done with that

process?

Starvation : How do we ensure that Starvation will not occur?
That is how can we guarantee that resources will not always be preempted from the
some process?

