
 

a- Banker’s Algorithm  

This Alg. Could be used in a banking system to ensure that the bank never allocates its 

available cash in such a way that it can no longer satisfy the needs of all its customers. 

When a new a process enters the system it must declare the maximum number of instances of 

each resource type that it may need. 

 

- The maximum must be   total number of resources in the system. 

-When a user requests a set of resources must be leave the system in a safe state if the 

resources are allocated otherwise the process must wait until some other process releases 

enough resources. 

Several data structures must be maintained to implement banker’s algorithm  

Let n be the number of processes in the system and m be the number of resource types . We 

need the following data structures: 

- Available : A vector of length m indicates the number of available resources of each 

type. 

If available [j] = k these are k instances of resource type Rj available . 

 

- Max : An nxm matrix defines the maximum demand of each process . If max[i,j] = k , 

then process Pi may request at most k instances of resource type Rj  

- Allocation : An nxm the resources currently allocated to each process . If allocation 

[i,j] = k then process pi is currently allocated process pi  is currently allocated 1 

instances of resources of resource type Rj. 

- Need : An nxm indicates the remaining resource need of each process . If need[i,j] = k 

then process pi may need k more instances of resource type Rj to complete its task . 

Need [ i,j] = Max [i,j] – Allocation [i,j] 

1- If request i   Need i go to step 2 otherwise raise an error since the process has exceeded 

its maximum claim. 

2- If request i   Available go to step 3 . Otherwise pi must wait since the resources are not 

available . 

3- The system pretends to have allocated the requested resources to process pi by modifying 

the state as follows: 

Available := Available – Requesti , 

Allocationi := Allocationi + Requesti , 

 

Needi:= Needi – Requesti, 

If the resulting resource allocation state is safe the transaction is completed and process pi is 

allocated its resources. If the new state is unsafe the pi must wait for request i and the old 

resource allocation state is restored. 

 

 

 

  



c-         Safety Algorithm  

The algorithm for finding out whether or out a system is in a safe state can be described as 

follows: 

1- Let work and finish be vectors of length m and n respectively.  

Initialize work := Available and Finish [i] := False for I = 1,2, …, n 

2- Find an i such that both  

- Finish [i] = false 

- Need i  work 

      If no such i exits, go to step 4 

3- Work := work +allocation I Finish[i] := true go to step2 

4- If Finish [i] = true for all I then the system is in a safe state 

This algorithm may require an order of mxn
2
 operations to decide whether a state is safe. 

Example: 

Consider a system with five processes {p0,p1,p2,…} and three resource types {A,B,C} . 

Resource type A has 10 instances. Resource type B has 5 instances, and resource type c 

has 7 instance. Suppose that at time T0 the following snapshot of the system has been 

taken. 

 

Allocation Max Available 

A B C A B C A B C 

0 1 0 7 5 3 3 3 2 

2 0 0 3 2 2   

3 0 2 9 0 2  

2 1 1  2 2 2  

0 0 2 4 3 3   

 

The content of the matrix Need is defined to be max-Allocation and is: 

Need 

A B C  

7 4 3 

1 2 2  

6 0 0  

0 1 1  

4 3 1  

 

 

 

The system is in the safe state if the processes executed in the sequence ( p1, p3 , p4 ,p2 , p0). 

Suppose now that process pi requests one additional instance of resource type A and two 

instance  of resources type C so request 1= (1 ,0 , 2) 

To decide whether this request can be immediately granted we first check that 

 Request 1   Available ( that is , ( 1,0,2)   (3,3,2)) which is true we then pretend that this 

request has been fulfilled and we arrive at the following new state. 
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Allocation Max Available 

A B C A B C A B C 

0 1 0 7 4 3 3 3 2 

3 0 2 0 2 0   

3 0 2 6 0 0  

2 1 1  0 1 1   

0 0 2 4 3 1   

 

By execute the safety Alg. We find the sequence ( p1 , p3 , p4 , p0 , p2) satisfies our safety 

requirements . Hence we can immediately grant the request of process p1  

If p4 request for ( 3 , 3 , 0) . The request can not granted since the resources are not  available 

. Request 1> Available . If p0 request (0 , 2 , 0) can not granted  even though the resources 

are available since the resulting state is unsafe. 

 

Deadlock Detection 

 
If a system does not employ some protocol that ensures that no deadlock will never occur. 

Then a detection and recovery scheme must be implemented . The system can use an 

algorithm to examines the state of the system periodically to determine whether has occurred 

. If so the system must recover from the deadlock by providing : 

a- Maintain information about the current allocation of resources to processes and 

outstanding request. 

b- Provide an Alg. That use the above information to determine whether the system has 

entered the deadlock state. 

The detection Alg. Employs several time – varying data structures that are very similar to 

those used in the Banker’s Algorithm : 

- Available  

- Allocation  

- Request . An nxm matrix indicating the current request of each process.  

If Request [i,j] = k then pi is requesting k more instances of resource type rj . 

The detection Alg. Simply investigates every possible allocation sequence for the 

processes that remain to be completed. 

    The detection Alg . as follows: 

1- Let work and finish be vectors of length m and n respectively . Initialize  

Work := Available , for i = 1 ,2 ,3, … , n. If allocation ≠ 0 the Finish  [i] := false. 

Otherwise , Finish[i] := false. 

2- Find an index i such that : 

- Finish [i] = false , and  

- Request i ≤ work . 

If no such I exits go to step 4. 

3- Work := work +Allocation i  

Finish [i] := true 

Go to step2 

4- If Finish [i] = false , for some i , 1≤ i ≤ n then the system is in a deadlock state. More 

over , if Finish [i] = false then process pi is deadlocked. 
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Example  

Consider a system with five processes {p0 , p1 ,… p4} and three resources types { A=7 

instance , B =2 , C=6 instance} suppose that at time T0 we the following resource 

allocation state. 

     

Allocation Max Available 

A B C A B C A B C 

0 1 0 0 0 0  0 0 0  

2 0 0 2 0 2   

3 0 3 0 0 0  

2 1 1  1 0 0    

0 0 2 0 0 2   

 

 

 

If we execute the detection Alg. We find the system is not in a deadlock  state and the 

sequence < p0 , p2 , p3 , p1 ,p4 > will result in finish [i] = true for all i . 

Suppose now that process p2 makes one additional request for an instance of type C. the 

Request matrix is modified as follows : 

 

Need 

A B C  

0 0 0 

2 0 2   

0 0 1  

1 0 0   

0 0 2  

 

We claim that the system is now deadlocked . Although we can reclaim the resources held by 

process p0 the number of available resources is not sufficient to fut fill the requests of the 

other processes . Thus a deadlock exist , consisting of processes < p1 , p2 , p3 and p4 >. 

 

- Single Instance of each resource type  

The detection Alg. is of order mxn
2
 . If all resources have only a single instance we can 

define a faster Alg. we will use a variant of the resource allocation graph called a wait 

– for graph . This graph is obtained from the resource allocation graph by removing 

the nodes of type resource and collapsing the appropriate edges. Where the edge from 

pi is waiting for process pj to release a resource that it needs. 

An edge (pi ,pj) exists in a wait – for graph if and only if the resource RAG contains 

two edges (pi , rq ) and (rq , pi) for some resource , see fig bellow 
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Fig: RAG (a) and its wait – for graph (b) 

 

 

A deadlock  exists in the system if and only if the wait – for graph contains a cycle. 

 

- Recovery from deadlock 

When a detection Alg. determines that a deadlock exists the system must recover from 

the deadlock . 

There are two options for breaking a deadlock  

a- Process termination by killing a process , two methods: 

- Kill all deadlocked processes. 

- Kill one process at a time until the deadlock cycle is eliminated. 
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b- Resource preemption, to eliminate deadlocks using resource preemption we can 

preempt some resources from processes and give them to other processes until the 

deadlock cycle is broken  . 

If preemption is required in order to deal with deadlocks then three issues need to 

be addressed: 

- Selecting a victim: which process and which resources . 

- Rollback : if we preempt a resource from a process what should be done with that 

process? 

 

- Starvation : How do we ensure that Starvation will not occur? 

That is how can we guarantee that resources will not always be preempted from the 

some process? 


