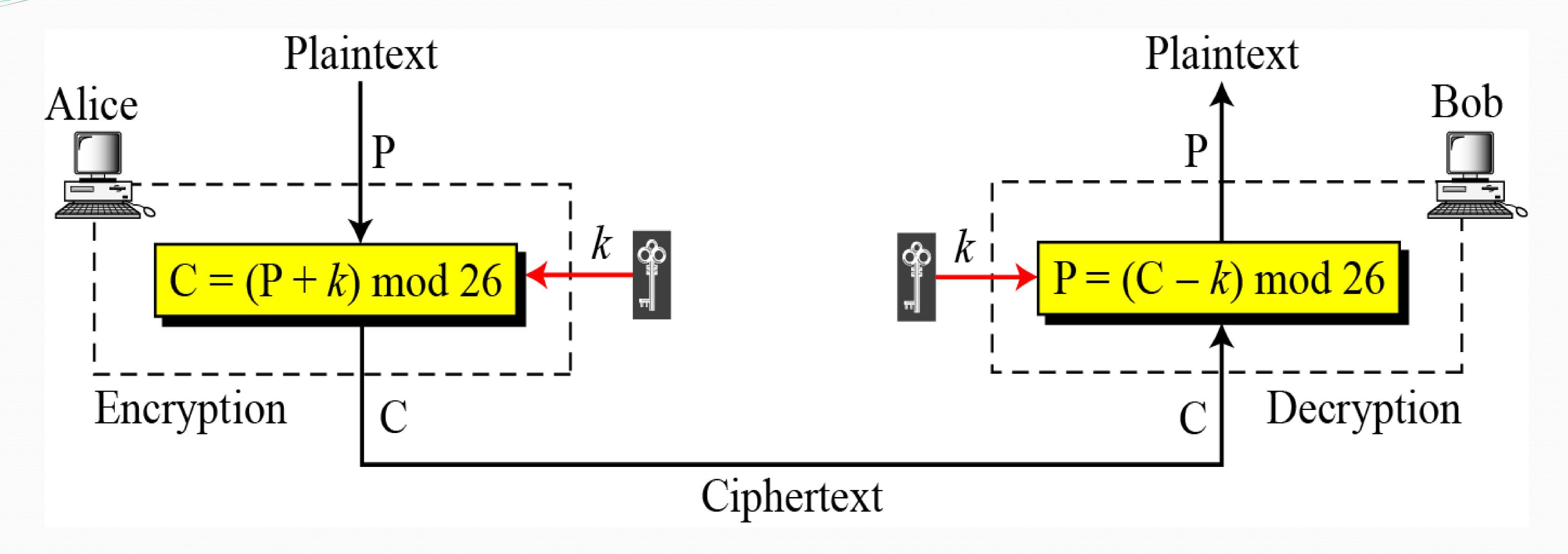


الجامعة المستنصرية / كلية التربية / قسم علوم الحاسبات 4th Class Computers & Data Security أمنية الحاسوب والبيانات

أستاذ المادة

آ.م. د . اخلاص عباس البحراني


Substitution cipher

- . Monoalphabetic Ciphers.
 - It is simple substitution
 - involves replacing each letter in the message with another letter of the alphabet.
 - In monoalphabetic substitution, the relationship between a symbol in the plaintext to a symbol in the ciphertext is always one-to-one.
- **Additive Cipher:** is the simplest monoalphabetic cipher. It is sometimes called a shift cipher and sometimes **a Caesar cipher**, but the term additive cipher better reveals its mathematical nature. When the cipher is additive, the plaintext, ciphertext, and key are integers in Z₂6.

Plaintext and ciphertext in Z_{26} Plaintext \longrightarrow a b c d e f g h i j k l m n o p q r s t u v w x y z

Ciphertext \longrightarrow A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Additive Cipher

Example

- Use the additive cipher with key = 15 to encrypt the plain text (hello).
- We apply the encryption algorithm to the plaintext, character by character:

```
Plaintext h e l l o 7 4 11 11 14 Encryption (7+15) mod 26=22\rightarrow W, (4+15) mod 26=19 \rightarrowT, (11+15) mod 26=0 \rightarrowA, (11+15) mod 26=0 \rightarrowA, (14+15) mod 26=3 \rightarrowD Ciphertext WTAAD
```

• We apply the decryption algorithm to the plaintext character by character: Ciphertext

```
W T A A D 22 19 0 0 3 Decryption (22-15) mod 26=7→ h, (19-15) mod 26=4 →e, (0-15) mod 26=11 →l, (0-15) mod 26=11 →l,(3-15) mod 26=14 →o Ciphertext h e l l o
```

- Caesar Cipher: Named for Julious Caesar. Caesar used a key of 3 for his communications.

 Plaintext ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Ciphertext de fg hi j klmnopq rs t uvwxy z abc
- Cryptanalysis of the Caesar cipher: -
- Example: decrypt the following ciphertext:- wklv phvvdjh lv qrw wrr kdug wr euhdn
- By using the above table, replace the characters as show ciphertext = wklv phvvdjh lv qrw wrr kdug wr euhdn
 plaintext = THIS MESSAGE IS NOT TOO HARD TO BREAK

- **Example:** Eve has intercepted the ciphertext (UVACLYFZLJBYL). Show how she can use a brute-force attack to break the cipher.
- Eve tries keys from 1 to 7. With a key of 7, the plaintext is (not very

Ciphertext: UVACLYFZLJBYL

```
K = 1 → Plaintext: tuzbkxeykiaxk
K = 2 → Plaintext: styajwdxjhzwj
K = 3 → Plaintext: rsxzivcwigyvi
K = 4 → Plaintext: qrwyhubvhfxuh
K = 5 → Plaintext: pqvxgtaugewtg
K = 6 → Plaintext: opuwfsztfdvsf
K = 7 → Plaintext: notverysecure
```

Table of Frequency of characters in English

Letter	Frequency	Letter	Frequency	Letter	Frequency	Letter	Frequency
E	12.7	Н	6.1	W	2.3	K	0.08
T	9.1	R	6.0	F	2.2	J	0.02
A	8.2	D	4.3	G	2.0	Q	0.01
O	7.5	L	4.0	Y	2.0	X	0.01
I	7.0	C	2.8	P	1.9	Z	0.01
N	6.7	U	2.8	В	1.5		
S	6.3	M	2.4	V	1.0		

Frequency distributions of Plaintext:-

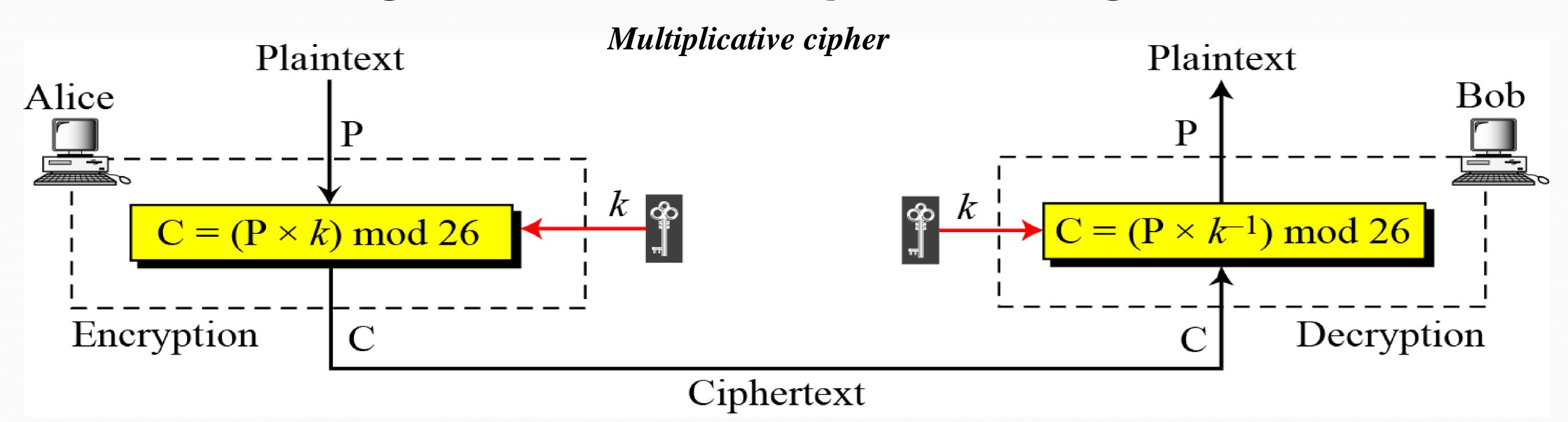
- E
- T
- A, O, R, N, I
- H, C, D, L, M
- •
- •
- X, J, Z, Q

Example: - Eve has intercepted the following ciphertext. Using a statistical attack, find the plaintext.

Ciphertext= hqfubswlrq lv d phdqv ri dwwdlqlqj vhfxuh frppxulfdwlrq

• When Eve tabulates the frequency of letters in this ciphertext, she gets: h=26, v=17 and so on.

Letter	Count	Percent	Letter	Count	Percent
a	О	0.00	n	О	0.00
ъ	3	1.80	•	4	2.41
C	O	0.00	P	5	2.99
d	11	6.59	q	16	9.58
e	2	1.20	r	9.	5.39
\mathbf{f}	6	3.61	s	3	1.80
g	4	2.40	ŧ	0	0.00
h	26	15.56	u	8	4.79
i	2.	1.20	v	17	10.18
i	5	2.99	w	14	8.38
k	5	2.99	x	5	2.99
1	16	9.58	¥	4	2.40
m	Õ	0.00	Z	2	1.20


Frequencies of characters

 So we will replace each character with the corresponding high frequency in plaintext as shown: -

Plaintext = ENCRYPTION IS A MEANS OF ATTAINING SECURE COMMUNICATION

Which means that the key is =3? How?

• Multiplicative Ciphers: - In a multiplicative cipher, the plaintext and ciphertext are integers in Z_{26} ; the key is an integer in Z_{26} *.

- The key domain for any multiplicative cipher which must be in Z26*, is the set that has only 12 members: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25.(why)
- Example: We use a multiplicative cipher to encrypt the message "hello" with a key of 7. The ciphertext is "XCZZU".

Plaintext: h → 07	Encryption: (07 × 07) mod 26	ciphertext: $23 \rightarrow X$
Plaintext: $e \rightarrow 04$	Encryption: $(04 \times 07) \mod 26$	ciphertext: $02 \rightarrow C$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \mod 26$	ciphertext: $25 \rightarrow Z$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 \times 07) \mod 26$	ciphertext: $25 \rightarrow Z$
Plaintext: $o \rightarrow 14$	Encryption: (14 × 07) mod 26	ciphertext: 20 → U

• Cryptanalyses of the multiplicative cipher based on finding the multiplication inverse of the key (where the multiplication inverse of **7 is 15**) as shown

Ciphertext $X \rightarrow 23$	Decryption: (23 * 15) mod 26	plaintext= 7→h
Ciphertext C → 2	Decryption: (2 * 15) mod 26	plaintext= 4→e
Ciphertext $Z \rightarrow 25$	Decryption: (25 * 15) mod 26	plaintext=11→l
Ciphertext $Z \rightarrow 25$	Decryption: (25 * 15) mod 26	plaintext=11→l
Ciphertext $U \rightarrow 20$	Decryption: (20 * 15) mod 26	plaintext=14→0