
Constructors and Deconstructor

Constructors
The ENGLOBJ example shows two ways that member functions can be used to give

values to the

initialize itself

function. Automatic initialization is carried out using a special member function called a

constructor. A constructor is a member function that is executed automatically whenever

an object is created.

-purpose

programming element. A counter is a variable that counts things. Maybe it counts file

accesses, or the number of times the user presses the Enter key, or the number of

customers entering a bank. Each time such an event takes place, the counter is incremented

 counter can also be accessed to find the current count.

is important in the program and must be accessed by many

different functions. In procedural languages such as C, a counter would probably be

implemented as a

 design and may be modified accidentally. This example,

COUNTER, provides a counter variable that can be modified only through its member

functions.

// object represents a counter variable

#include <iostream>

class Counter

{

private:

 unsigned int count; //count

public:

 { /*empty body*/ }

 void inc_count() //increment count

 { count++; }

 int get_count() //return count

 { return count; }

};

Constructors and Deconstructor

//

int main()

{

\

\

\ again

\

cout << endl;

}

The Counter class has one data member: count, of type unsigned int (since the count is

always positive). It has three member functions:

look

the current value of count.

Automatic Initialization

When an object of type Coun

After

it with

always set count

created a Counter object.

 //every time we do this,

 //we must do this too

This is mistake prone, because the programmer may forget to initialize the object after

Constructors and Deconstructor

creating

objects of a given ated. In the

Counter class, the constructor Counter() does this. This function is called automatically

whenever a new object of type Counter is created. Thus in main() the statement

creates two objects of type Counter. As each is created, its constructor, Counter (), is

executed.

to not only

Same Name as the Class

There are some unusual aspects of constructor functions.

First, it is no accident that they have exactly the same name (Counter in this example) as

the class of which they are members. This is one way the compiler knows they are

constructors.

Second, no return type is used for constructors. Why not? Since the constructor is called

Initializer List

one of the most common tasks a constructor carries out is initializing data members. In the

this

count()

{ coun

should initialize a data member:

{ }

The initialization takes place following the member function declarator but before the

function

Constructors and Deconstructor

member data.

initializer list (sometimes called by other names, such as the member-initialization list).

{ }

Why not initialize members in the body of the constructor? The reasons are complex, but

have to do with the fact that members initialized in the initializer list are given a value

before the constructor even starts to execute. This is important in some situations. For

example, the initializer list is the only way to initialize const member data and references.

Actions more complicated than simple initialization must be carried out in the constructor

body, as with ordinary functions.

Counter Output

It causes the counters to display their initial values, which as arranged by the

constructor are cause the counters

to display themselves. :

constructor to print a message when it executes.

\

Constructors and Deconstructor

As you can see, the constructor is executed twice once for and once for when the

statement is executed in main().

Destructors

the constructor is called automatically

when an object is first created. You might guess that another function is called

automatically when an object is destroyed. This is indeed the case. Such a function is

called a destructor. A destructor has the same name as the constructor (which is the same

as the class name) but is preceded by a tilde:

class Foo

{

private:

int data;

public:

{ }

~Foo() //destructor (same name with tilde)

{ }

};

Like constructors, destructors do not have a return value. They also take no arguments

(the roy an object).

Constructors and Deconstructor

The most common use of destructors is to deallocate memory that was allocated for the

object by the constructor.

Objects as Function Arguments

our next program adds some embellishments to the ENGLOBJ example. It also

demonstrates some new aspects of classes:

- Constructor overloading.

- defining member functions outside the class

- Defining objects as function arguments.

#include <iostream>

class Distance //English Distance class

{

private:

 int feet;

 float inches;

public:

 //constructor (no args)

 { }

 //constructor (two args)

 Distance(int ft, float in) : feet(ft), inches(in)

 { }

 void getdist() //get length from user

 {

 c \

 }

 void showdist() //display distance

 {

 \ - \

