

Functions

Assist. Prof. Dr.

Ahmed Hashim Mohammed

IN THIS CHAPTER

• Simple Functions

• Passing Arguments to Functions

• Returning Values from Functions

• Reference Arguments

• Overloaded Functions

• Recursion

• Inline Functions

• Default Arguments

• Scope and Storage Class

• Returning by Reference

• const Function Arguments

CHAPTER

5

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

1

A function groups a number of program statements into a unit and gives it a name. This unit

can then be invoked from other parts of the program.

The most important reason to use functions is to aid in the conceptual organization of a pro-

gram. Dividing a program into functions is, as we discussed in Chapter 1, “The Big Picture,”

one of the major principles of structured programming. (However, object-oriented program-

ming provides additional, more powerful ways to organize programs.)

Another reason to use functions (and the reason they were invented, long ago) is to reduce pro-

gram size. Any sequence of instructions that appears in a program more than once is a candi-

date for being made into a function. The function’s code is stored in only one place in memory,

even though the function is executed many times in the course of the program. Figure 5.1

shows how a function is invoked from different sections of a program.

FIGURE 5.1
Flow of control to a function.

Functions in C++ (and C) are similar to subroutines and procedures in various other languages.

Simple Functions
Our first example demonstrates a simple function whose purpose is to print a line of 45 aster-

isks. The example program generates a table, and lines of asterisks are used to make the table

more readable. Here’s the listing for TABLE:

Chapter 5
2

F

U
N

C
T

IO
N

S

// table.cpp

// demonstrates simple function

#include <iostream>

using namespace std;

void starline(); //function declaration

// (prototype)

int main()

{

starline(); //call to function

cout << “Data type Range” << endl;

starline(); //call to function

cout << “char -128 to 127” << endl

<< “short -32,768 to 32,767” << endl

<< “int System dependent” << endl

<< “long -2,147,483,648 to 2,147,483,647” << endl;

starline(); //call to function

return 0;

}

//--

// starline()

// function definition

void starline() //function declarator

{

for(int j=0; j<45; j++) //function body

cout << ‘*’;

cout << endl;

}

The output from the program looks like this:

Data type Range

char -128 to 127

short -32,768 to 32,767

int System dependent

long -2,147,483,648 to 2,147,483,647

The program consists of two functions: main() and starline(). You’ve already seen many

programs that use main() alone. What other components are necessary to add a function to the 5
program? There are three: the function declaration, the calls to the function, and the function

definition.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

3

The Function Declaration
Just as you can’t use a variable without first telling the compiler what it is, you also can’t use a

function without telling the compiler about it. There are two ways to do this. The approach we

show here is to declare the function before it is called. (The other approach is to define it

before it’s called; we’ll examine that next.) In the TABLE program, the function starline() is

declared in the line

void starline();

The declaration tells the compiler that at some later point we plan to present a function called

starline. The keyword void specifies that the function has no return value, and the empty

parentheses indicate that it takes no arguments. (You can also use the keyword void in paren-

theses to indicate that the function takes no arguments, as is often done in C, but leaving them

empty is the more common practice in C++.) We’ll have more to say about arguments and

return values soon.

Notice that the function declaration is terminated with a semicolon. It is a complete statement

in itself.

Function declarations are also called prototypes, since they provide a model or blueprint for the

function. They tell the compiler, “a function that looks like this is coming up later in the pro-

gram, so it’s all right if you see references to it before you see the function itself.” The infor-

mation in the declaration (the return type and the number and types of any arguments) is also

sometimes referred to as the function signature.

Calling the Function

The function is called (or invoked, or executed) three times from main(). Each of the three

calls looks like this:

starline();

This is all we need to call the function: the function name, followed by parentheses. The syn-

tax of the call is very similar to that of the declaration, except that the return type is not used.

The call is terminated by a semicolon. Executing the call statement causes the function to exe-

cute; that is, control is transferred to the function, the statements in the function definition

(which we’ll examine in a moment) are executed, and then control returns to the statement fol-

lowing the function call.

The Function Definition
Finally we come to the function itself, which is referred to as the function definition. The defi-

nition contains the actual code for the function. Here’s the definition for starline():

Chapter 5
4

F
U

N
C

T
IO

N
S

void starline() //declarator

{

for(int j=0; j<45; j++) //function body

cout << ‘*’;

cout << endl;

}

The definition consists of a line called the declarator, followed by the function body. The

function body is composed of the statements that make up the function, delimited by braces.

The declarator must agree with the declaration: It must use the same function name, have the

same argument types in the same order (if there are arguments), and have the same return type.

Notice that the declarator is not terminated by a semicolon. Figure 5.2 shows the syntax of the

function declaration, function call, and function definition.

5

FIGURE 5.2
Function syntax.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

5

When the function is called, control is transferred to the first statement in the function body.

The other statements in the function body are then executed, and when the closing brace is

encountered, control returns to the calling program.

Table 5.1 summarizes the different function components.

TABLE 5.1 Function Components

Component Purpose Example

Declaration

(prototype)

Specifies function name, argument

types, and return value. Alerts

compiler (and programmer) that a

function is coming up later.

void func();

Call Causes the function to be executed. func();

Definition The function itself. Contains the

lines of code that constitute

the function.

void func()

{

// lines of code

 }

Declarator First line of definition. void func()

Comparison with Library Functions
We’ve already seen some library functions in use. We have embedded calls to library functions,

such as

ch = getche();

in our program code. Where are the declaration and definition for this library function? The

declaration is in the header file specified at the beginning of the program (CONIO.H, for

getche()). The definition (compiled into executable code) is in a library file that’s linked auto-

matically to your program when you build it.

When we use a library function we don’t need to write the declaration or definition. But when

we write our own functions, the declaration and definition are part of our source file, as we’ve

shown in the TABLE example. (Things get more complicated in multifile programs, as we’ll dis-

cuss in Chapter 13, “Multifile Programs.”)

Eliminating the Declaration
The second approach to inserting a function into a program is to eliminate the function declara-

tion and place the function definition (the function itself) in the listing before the first call to

the function. For example, we could rewrite TABLE to produce TABLE2, in which the definition

for starline() appears first.

Chapter 5
6

F

U
N

C
T

IO
N

S

// table2.cpp

// demonstrates function definition preceding function calls

#include <iostream>

using namespace std; //no function declaration

//--

// starline() //function definition

void starline()

{

for(int j=0; j<45; j++)

cout << ‘*’;

cout << endl;

}

//--

int main() //main() follows function

{

starline(); //call to function

cout << “Data type Range” << endl;

starline(); //call to function

cout << “char -128 to 127” << endl

<< “short -32,768 to 32,767” << endl

<< “int System dependent” << endl

<< “long -2,147,483,648 to 2,147,483,647” << endl;

starline(); //call to function

return 0;

}

This approach is simpler for short programs, in that it removes the declaration, but it is less

flexible. To use this technique when there are more than a few functions, the programmer must

give considerable thought to arranging the functions so that each one appears before it is called

by any other. Sometimes this is impossible. Also, many programmers prefer to place main()

first in the listing, since it is where execution begins. In general we’ll stick with the first

approach, using declarations and starting the listing with main().

Passing Arguments to Functions

An argument is a piece of data (an int value, for example) passed from a program to the func-

tion. Arguments allow a function to operate with different values, or even to do different

things, depending on the requirements of the program calling it.

Passing Constants
 5

As an example, let’s suppose we decide that the starline() function in the last example is too

rigid. Instead of a function that always prints 45 asterisks, we want a function that will print

any character any number of times.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

7

Here’s a program, TABLEARG, that incorporates just such a function. We use arguments to pass

the character to be printed and the number of times to print it.

// tablearg.cpp

// demonstrates function arguments

#include <iostream>

using namespace std;

void repchar(char, int); //function declaration

int main()

{

repchar(‘-’, 43); //call to function

cout << “Data type Range” << endl;

repchar(‘=’, 23); //call to function

cout << “char -128 to 127” << endl

<< “short -32,768 to 32,767” << endl

<< “int System dependent” << endl

<< “double -2,147,483,648 to 2,147,483,647” << endl;

repchar(‘-’, 43); //call to function

return 0;

}

//--

// repchar()

// function definition

void repchar(char ch, int n) //function declarator

{

for(int j=0; j<n; j++) //function body

cout << ch;

cout << endl;

}

The new function is called repchar(). Its declaration looks like this:

void repchar(char, int); // declaration specifies data types

The items in the parentheses are the data types of the arguments that will be sent to repchar():

char and int.

In a function call, specific values—constants in this case—are inserted in the appropriate place

in the parentheses:

repchar(‘-’, 43); // function call specifies actual values

This statement instructs repchar() to print a line of 43 dashes. The values supplied in the call

must be of the types specified in the declaration: the first argument, the - character, must be of

type char; and the second argument, the number 43, must be of type int. The types in the dec-

laration and the definition must also agree.

Chapter 5
8

The next call to repchar()

repchar(‘=’, 23);

tells it to print a line of 23 equal signs. The third call again prints 43 dashes. Here’s the output

from TABLEARG:

Data type Range

=======================

char -128 to 127

short -32,768 to 32,767

int System dependent

long -2,147,483,648 to 2,147,483,647

The calling program supplies arguments, such as ‘–’ and 43, to the function. The variables

used within the function to hold the argument values are called parameters; in repchar() they

are ch and n. (We should note that many programmers use the terms argument and parameter

somewhat interchangeably.) The declarator in the function definition specifies both the data

types and the names of the parameters:

void repchar(char ch, int n) //declarator specifies parameter

//names and data types

These parameter names, ch and n, are used in the function as if they were normal variables.

Placing them in the declarator is equivalent to defining them with statements like

char ch;

int n;

When the function is called, its parameters are automatically initialized to the values passed by

the calling program.

Passing Variables
In the TABLEARG example the arguments were constants: ‘–’, 43, and so on. Let’s look at an

example where variables, instead of constants, are passed as arguments. This program, VARARG,

incorporates the same repchar() function as did TABLEARG, but lets the user specify the char-

acter and the number of times it should be repeated.

// vararg.cpp 5
// demonstrates variable arguments

#include <iostream>

using namespace std;

void repchar(char, int); //function declaration

F
U

N
C

T
IO

N
S

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

9

int main()

{

char chin;

int nin;

cout << “Enter a character: “;

cin >> chin;

cout << “Enter number of times to repeat it: “;

cin >> nin;

repchar(chin, nin);

return 0;

}

//--

// repchar()

// function definition

void repchar(char ch, int n) //function declarator

{

for(int j=0; j<n; j++) //function body

cout << ch;

cout << endl;

}

Here’s some sample interaction with VARARG:

Enter a character: +

Enter number of times to repeat it: 20

++++++++++++++++++++

Here chin and nin in main() are used as arguments to repchar():

repchar(chin, nin); // function call

The data types of variables used as arguments must match those specified in the function dec-

laration and definition, just as they must for constants. That is, chin must be a char, and nin

must be an int.

Passing by Value

In VARARG the particular values possessed by chin and nin when the function call is executed

will be passed to the function. As it did when constants were passed to it, the function creates

new variables to hold the values of these variable arguments. The function gives these new

variables the names and data types of the parameters specified in the declarator: ch of type

char and n of type int. It initializes these parameters to the values passed. They are then

accessed like other variables by statements in the function body.

Chapter 5
10

F

U
N

C
T

IO
N

S

Passing arguments in this way, where the function creates copies of the arguments passed to it,

is called passing by value. We’ll explore another approach, passing by reference, later in this

chapter. Figure 5.3 shows how new variables are created in the function when arguments are

passed by value.

FIGURE 5.3
Passing by value.

Structures as Arguments
Entire structures can be passed as arguments to functions. We’ll show two examples, one with

the Distance structure, and one with a structure representing a graphics shape.
 5

Passing a Distance Structure
This example features a function that uses an argument of type Distance, the same structure

type we saw in several programs in Chapter 4, “Structures.” Here’s the listing for ENGLDISP:

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

11

// engldisp.cpp

// demonstrates passing structure as argument

#include <iostream>

using namespace std;

//

struct Distance //English distance

{

int feet;

float inches;

};

//

void engldisp(Distance); //declaration

int main()

{

Distance d1, d2; //define two lengths

//get length d1 from user

cout << “Enter feet: “; cin >> d1.feet;

cout << “Enter inches: “; cin >> d1.inches;

//get length d2 from user

cout << “\nEnter feet: “; cin >> d2.feet;

cout << “Enter inches: “; cin >> d2.inches;

cout << “\nd1 = “;

engldisp(d1); //display length 1

cout << “\nd2 = “;

engldisp(d2); //display length 2

cout << endl;

return 0;

}

//--

// engldisp()

// display structure of type Distance in feet and inches

void engldisp(Distance dd) //parameter dd of type Distance

{

cout << dd.feet << “\’-” << dd.inches << “\””;

}

The main() part of this program accepts two distances in feet-and-inches format from the user,

and places these values in two structures, d1 and d2. It then calls a function, engldisp(), that

takes a Distance structure variable as an argument. The purpose of the function is to display

the distance passed to it in the standard format, such as 10'–2.25''. Here’s some sample interac-

tion with the program:

Enter feet: 6

Enter inches: 4

Chapter 5
12

F
U

N
C

T
IO

N
S

Enter feet: 5

Enter inches: 4.25

d1 = 6’-4”

d2 = 5’-4.25”

The function declaration and the function calls in main(), and the declarator in the function

body, treat the structure variables just as they would any other variable used as an argument;

this one just happens to be type Distance, rather than a basic type like char or int.

In main() there are two calls to the function engldisp(). The first passes the structure d1; the

second passes d2. The function engldisp() uses a parameter that is a structure of type

Distance, which it names dd. As with simple variables, this structure variable is automatically

initialized to the value of the structure passed from main(). Statements in engldisp() can then

access the members of dd in the usual way, with the expressions dd.feet and dd.inches.

Figure 5.4 shows a structure being passed as an argument to a function.

5

FIGURE 5.4
Structure passed as an argument.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

13

As with simple variables, the structure parameter dd in engldisp() is not the same as the argu-

ments passed to it (d1 and d2). Thus, engldisp() could (although it doesn’t do so here) modify

dd without affecting d1 and d2. That is, if engldisp() contained statements like

dd.feet = 2;

dd.inches = 3.25;

this would have no effect on d1 or d2 in main().

Passing a circle Structure

The next example of passing a structure to a function makes use of the Console Graphics Lite

functions. The source and header files for these functions are shown in Appendix E, “Console

Graphics Lite,” and can be downloaded from the publisher’s Web site as described in the

Introduction. You’ll need to include the appropriate header file (MSOFTCON.H or BORLACON.H,

depending on your compiler), and add the source file (MSOFTCON.CPP or BORLACON.CPP) to your

project. The Console Graphics Lite functions are described in Appendix E, and the procedure

for adding files to projects is described in Appendix C, “Microsoft Visual C++,” and Appendix

D, “Borland C++Builder.”

In this example a structure called circle represents a circular shape. Circles are positioned at a

certain place on the console screen, and have a certain radius. They also have a color and a fill

pattern. Possible values for the colors and fill patterns can be found in Appendix E. Here’s the

listing for CIRCSTRC:

// circstrc.cpp

// circles as graphics objects

#include “msoftcon.h” // for graphics functions

//

struct circle //graphics circle

{

int xCo, yCo; //coordinates of center

int radius;

color fillcolor; //color

fstyle fillstyle; //fill pattern

};

//

void circ_draw(circle c)

{

set_color(c.fillcolor); //set color

set_fill_style(c.fillstyle); //set fill pattern

draw_circle(c.xCo, c.yCo, c.radius); //draw solid circle

}

//--

int main()

{

init_graphics(); //initialize graphics system

//create circles

Chapter 5
14

F
U

N
C

T
IO

N
S

circle c1 = { 15, 7, 5, cBLUE, X_FILL };

circle c2 = { 41, 12, 7, cRED, O_FILL };

circle c3 = { 65, 18, 4, cGREEN, MEDIUM_FILL };

circ_draw(c1); //draw circles

circ_draw(c2);

circ_draw(c3);

set_cursor_pos(1, 25); //cursor to lower left corner

return 0;

}

The variables of type circle, which are c1, c2, and c3, are initialized to different sets of val-

ues. Here’s how that looks for c1:

circle c1 = { 15, 7, 5, cBLUE, X_FILL };

We assume that your console screen has 80 columns and 25 rows. The first value in this defini-

tion, 15, is the column number (the x coordinate) and the 7 is the row number (the y coordi-

nate, starting at the top of the screen) where the center of the circle will be located. The 5 is

the radius of the circle, the cBLUE is its color, and the X_FILL constant means it will be filled

with the letter X. The two other circles are initialized similarly.

Once all the circles are created and initialized, we draw them by calling the circ_draw() func-

tion three times, once for each circle. Figure 5.5 shows the output of the CIRCSTRC program.

Admittedly the circles are a bit ragged; a result of the limited number of pixels in console-

mode graphics.

5

FIGURE 5.5
Output of the CIRCSTRC program.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

15

Notice how the structure holds the characteristics of the circles, while the circ_draw() func-

tion causes them to actually do something (draw themselves). As we’ll see in Chapter 6,

“Objects and Classes,” objects are formed by combining structures and functions to create enti-

ties that both possess characteristics and perform actions.

Names in the Declaration

Here’s a way to increase the clarity of your function declarations. The idea is to insert mean-

ingful names in the declaration, along with the data types. For example, suppose you were

using a function that displayed a point on the screen. You could use a declaration with only

data types

void display_point(int, int); //declaration

but a better approach is

void display_point(int horiz, int vert); //declaration

These two declarations mean exactly the same thing to the compiler. However, the first

approach, with (int, int), doesn’t contain any hint about which argument is for the vertical

coordinate and which is for the horizontal coordinate. The advantage of the second approach is

clarity for the programmer: Anyone seeing this declaration is more likely to use the correct

arguments when calling the function.

Note that the names in the declaration have no effect on the names you use when calling the

function. You are perfectly free to use any argument names you want:

display_point(x, y); // function call

We’ll use this name-plus-datatype approach when it seems to make the listing clearer.

Returning Values from Functions

When a function completes its execution, it can return a single value to the calling program.

Usually this return value consists of an answer to the problem the function has solved. The

next example demonstrates a function that returns a weight in kilograms after being given a

weight in pounds. Here’s the listing for CONVERT:

// convert.cpp

// demonstrates return values, converts pounds to kg

#include <iostream>

using namespace std;

float lbstokg(float); //declaration

int main()

{

float lbs, kgs;

Chapter 5
16

F

U
N

C
T

IO
N

S

cout << “\nEnter your weight in pounds: “;

cin >> lbs;

kgs = lbstokg(lbs);

cout << “Your weight in kilograms is “ << kgs << endl;

return 0;

}

//--

// lbstokg()

// converts pounds to kilograms

float lbstokg(float pounds)

{

float kilograms = 0.453592 * pounds;

return kilograms;

}

Here’s some sample interaction with this program:

Enter your weight in pounds: 182

Your weight in kilograms is 82.553741

When a function returns a value, the data type of this value must be specified. The function

declaration does this by placing the data type, float in this case, before the function name in

the declaration and the definition. Functions in earlier program examples returned no value, so

the return type was void. In the CONVERT program, the function lbstokg() (pounds to kilo-

grams, where lbs means pounds) returns type float, so the declaration is

float lbstokg(float);

The first float specifies the return type. The float in parentheses specifies that an argument

to be passed to lbstokg() is also of type float.

When a function returns a value, the call to the function

lbstokg(lbs)

is considered to be an expression that takes on the value returned by the function. We can treat

this expression like any other variable; in this case we use it in an assignment statement:

kgs = lbstokg(lbs);

This causes the variable kgs to be assigned the value returned by lbstokg().

The return Statement 5
The function lbstokg() is passed an argument representing a weight in pounds, which it

stores in the parameter pounds. It calculates the corresponding weight in kilograms by multi-

plying this pounds value by a constant; the result is stored in the variable kilograms. The

value of this variable is then returned to the calling program using a return statement:

return kilograms;

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

17

Notice that both main() and lbstokg() have a place to store the kilogram variable: kgs in

main(), and kilograms in lbstokg(). When the function returns, the value in kilograms is

copied into kgs. The calling program does not access the kilograms variable in the function;

only the value is returned. This process is shown in Figure 5.6.

FIGURE 5.6
Returning a value.

While many arguments may be sent to a function, only one argument may be returned from it.

This is a limitation when you need to return more information. However, there are other

approaches to returning multiple variables from functions. One is to pass arguments by refer-

ence, which we’ll look at later in this chapter. Another is to return a structure with the multiple

values as members, as we’ll see soon.

You should always include a function’s return type in the function declaration. If the function

doesn’t return anything, use the keyword void to indicate this fact. If you don’t use a return

type in the declaration, the compiler will assume that the function returns an int value. For

example, the declaration

somefunc(); // declaration -- assumes return type is int

tells the compiler that somefunc() has a return type of int.

Chapter 5
18

The reason for this is historical, based on usage in early versions of C. In practice, you

shouldn’t take advantage of this default type. Always specify the return type explicitly, even if

it actually is int. This keeps the listing consistent and readable.

Eliminating Unnecessary Variables
The CONVERT program contains several variables that are used in the interest of clarity but are

not really necessary. A variation of this program, CONVERT2, shows how expressions containing

functions can often be used in place of variables.

// convert2.cpp

// eliminates unnecessary variables

#include <iostream>

using namespace std;

float lbstokg(float); //declaration

int main()

{

float lbs;

cout << “\nEnter your weight in pounds: “;

cin >> lbs;

cout << “Your weight in kilograms is “ << lbstokg(lbs)

<< endl;

return 0;

}

//--

// lbstokg()

// converts pounds to kilograms

float lbstokg(float pounds)

{

return 0.453592 * pounds;

}

In main() the variable kgs from the CONVERT program has been eliminated. Instead the func-

tion lbstokg(lbs) is inserted directly into the cout statement:

cout << “Your weight in kilograms is “ << lbstokg(lbs) << endl;

Also in the lbstokg() function, the variable kilograms is no longer used. The expression

0.453592*pounds is inserted directly into the return statement:

5
return 0.453592 * pounds;

The calculation is carried out and the resulting value is returned to the calling program, just as

the value of a variable would be.

F
U

N
C

T
IO

N
S

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

19

For clarity, programmers often put parentheses around the expression used in a return state-

ment:

return (0.453592 * pounds);

Even when not required by the compiler, extra parentheses in an expression don’t do any harm,

and they may help make the listing easier for us poor humans to read.

Experienced C++ (and C) programmers will probably prefer the concise form of CONVERT2 to

the more verbose CONVERT. However, CONVERT2 is not so easy to understand, especially for the

non-expert. The brevity-versus-clarity issue is a question of style, depending on your personal

preference and on the expectations of those who will be reading your code.

Returning Structure Variables

We’ve seen that structures can be used as arguments to functions. You can also use them as

return values. Here’s a program, RETSTRC, that incorporates a function that adds variables of

type Distance and returns a value of this same type:

// retstrc.cpp

// demonstrates returning a structure

#include <iostream>

using namespace std;

//

struct Distance //English distance

{

int feet;

float inches;

};

//

Distance addengl(Distance, Distance); //declarations

void engldisp(Distance);

int main()

{

Distance d1, d2, d3; //define three lengths

//get length d1 from user

cout << “\nEnter feet: “; cin >> d1.feet;

cout << “Enter inches: “; cin >> d1.inches;

//get length d2 from user

cout << “\nEnter feet: “; cin >> d2.feet;

cout << “Enter inches: “; cin >> d2.inches;

d3 = addengl(d1, d2); //d3 is sum of d1 and d2

cout << endl;

engldisp(d1); cout << “ + “; //display all lengths

Chapter 5
20

F
U

N
C

T
IO

N
S

engldisp(d2); cout << “ = “;

engldisp(d3); cout << endl;

return 0;

}

//--

// addengl()

// adds two structures of type Distance, returns sum

Distance addengl(Distance dd1, Distance dd2)

{

Distance dd3; //define a new structure for sum

dd3.inches = dd1.inches + dd2.inches; //add the inches

dd3.feet = 0; //(for possible carry)

if(dd3.inches >= 12.0) //if inches >= 12.0,

{ //then decrease inches

dd3.inches -= 12.0; //by 12.0 and

dd3.feet++; //increase feet

} //by 1

dd3.feet += dd1.feet + dd2.feet; //add the feet

return dd3; //return structure

}

//--

// engldisp()

// display structure of type Distance in feet and inches

void engldisp(Distance dd)

{

cout << dd.feet << “\’-” << dd.inches << “\””;

}

The program asks the user for two lengths, in feet-and-inches format, adds them together by

calling the function addengl(), and displays the results using the engldisp() function intro-

duced in the ENGLDISP program. Here’s some output from the program:

Enter feet: 4

Enter inches: 5.5

Enter feet: 5

Enter inches: 6.5

4’-5.5” + 5’-6.5” = 10’-0”

The main() part of the program adds the two lengths, each represented by a structure of type 5
Distance, by calling the function addengl():

d3 = addengl(d1, d2);

This function returns the sum of d1 and d2, in the form of a structure of type Distance. In

main() the result is assigned to the structure d3.

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

21

Besides showing how structures are used as return values, this program also shows two func-

tions (three if you count main()) used in the same program. You can arrange the functions in

any order. The only rule is that the function declarations must appear in the listing before any

calls are made to the functions.

Reference Arguments

A reference provides an alias—a different name—for a variable. One of the most important

uses for references is in passing arguments to functions.

We’ve seen examples of function arguments passed by value. When arguments are passed by

value, the called function creates a new variable of the same type as the argument and copies

the argument’s value into it. As we noted, the function cannot access the original variable in

the calling program, only the copy it created. Passing arguments by value is useful when the

function does not need to modify the original variable in the calling program. In fact, it offers

insurance that the function cannot harm the original variable.

Passing arguments by reference uses a different mechanism. Instead of a value being passed to

the function, a reference to the original variable, in the calling program, is passed. (It’s actually

the memory address of the variable that is passed, although you don’t need to know this.)

An important advantage of passing by reference is that the function can access the actual vari-

ables in the calling program. Among other benefits, this provides a mechanism for passing

more than one value from the function back to the calling program.

Passing Simple Data Types by Reference
The next example, REF, shows a simple variable passed by reference.

// ref.cpp

// demonstrates passing by reference

#include <iostream>

using namespace std;

int main()

{

void intfrac(float, float&, float&); //declaration

float number, intpart, fracpart; //float variables

do {

cout << “\nEnter a real number: “; //number from user

cin >> number;

intfrac(number, intpart, fracpart); //find int and frac

cout << “Integer part is “ << intpart //print them

<< “, fraction part is “ << fracpart << endl;

Chapter 5
22

F

U
N

C
T

IO
N

S

} while(number != 0.0); //exit loop on 0.0

return 0;

}

//--

// intfrac()

// finds integer and fractional parts of real number

void intfrac(float n, float& intp, float& fracp)

{

long temp = static_cast<long>(n); //convert to long,

intp = static_cast<float>(temp); //back to float

fracp = n - intp; //subtract integer part

}

The main() part of this program asks the user to enter a number of type float. The program

will separate this number into an integer and a fractional part. That is, if the user’s number is

12.456, the program should report that the integer part is 12.0 and the fractional part is 0.456.

To find these two values, main() calls the function intfrac(). Here’s some sample interac-

tion:

Enter a real number: 99.44

Integer part is 99, fractional part is 0.44

Some compilers may generate spurious digits in the fractional part, such as 0.440002. This is

an error in the compiler’s conversion routine and can be ignored. Refer to Figure 5.7 in the fol-

lowing discussion.

The intfrac() function finds the integer part by converting the number (which was passed to

the parameter n) into a variable of type long with a cast, using the expression

long temp = static_cast<long>(n);

This effectively chops off the fractional part of the number, since integer types (of course)

store only the integer part. The result is then converted back to type float with another cast:

intp = static_cast<float>(temp);

The fractional part is simply the original number less the integer part. (We should note that a

library function, fmod(), performs a similar task for type double.)

The intfrac() function can find the integer and fractional parts, but how does it pass them

back to main()? It could use a return statement to return one value, but not both. The problem

is solved using reference arguments. Here’s the declarator for the function: 5

void intfrac(float n, float& intp, float& fracp)

OOP Functions Dr. Ahmed Hashim Mohammed
Functions

23

intfrac(number,intpart,fracpart);

This statement in main() causes

this variable to be copied into

this parameter.

It also sets up aliases for

these variables with these names.

main()

number

intpart

fracpart

These statements

in intfrac() operate on

these variables

as if they were in intfrac().

intfrac()

n

intp

fracp

fracp = n-intp;

long temp = static_cast<long>(n);

FIGURE 5.7
Passing by reference in the REF program.

Reference arguments are indicated by the ampersand (&) following the data type:

float& intp

The & indicates that intp is an alias—another name—for whatever variable is passed as an

argument. In other words, when you use the name intp in the intfrac() function, you are

really referring to intpart in main(). The & can be taken to mean reference to, so

float& intp

means intp is a reference to the float variable passed to it. Similarly, fracp is an alias for—

or a reference to—fracpart.

The function declaration echoes the usage of the ampersand in the definition:

void intfrac(float, float&, float&); // ampersands

As in the definition, the ampersand follows those arguments that are passed by reference.

Chapter 5
24

F

U
N

C
T

IO
N

S

The ampersand is not used in the function call:

intfrac(number, intpart, fracpart); // no ampersands

From the function call alone, there’s no way to tell whether an argument will be passed by ref-

erence or by value.

While intpart and fracpart are passed by reference, the variable number is passed by value.

intp and intpart are different names for the same place in memory, as are fracp and

fracpart. On the other hand, since it is passed by value, the parameter n in intfrac() is a

separate variable into which the value of number is copied. It can be passed by value because

the intfrac() function doesn’t need to modify number.

(C programmers should not confuse the ampersand that is used to mean reference to with

the same symbol used to mean address of. These are different usages. We’ll discuss the

address of meaning of & in Chapter 10, “Pointers.”)

A More Complex Pass by Reference
Here’s a somewhat more complex example of passing simple arguments by reference. Suppose

you have pairs of numbers in your program and you want to be sure that the smaller one

always precedes the larger one. To do this you call a function, order(), which checks two

numbers passed to it by reference and swaps the originals if the first is larger than the second.

Here’s the listing for REFORDER:

// reforder.cpp

// orders two arguments passed by reference

#include <iostream>

using namespace std;

int main()

{

void order(int&, int&); //prototype

int n1=99, n2=11; //this pair not ordered

int n3=22, n4=88; //this pair ordered

order(n1, n2); //order each pair of numbers

order(n3, n4);

cout << “n1=” << n1 << endl; //print out all numbers 5
cout << “n2=” << n2 << endl;

cout << “n3=” << n3 << endl;

cout << “n4=” << n4 << endl;

return 0;

}

