

The values to be assigned to the structure members are surrounded by braces and separated by

commas. The first value in the list is assigned to the first member, the second to the second

member, and so on.

As can be seen in PARTINIT, one structure variable can be assigned to another:

The value of each member of is assigned to the corresponding member of . Since

a large structure can have dozens of members, such an assignment statement can require the

computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same

structure type. If you try to assign a variable of one structure type to a variable of another type,

the compiler will complain.

looked at an architectural drawing, you know that (at least in the United States) distances are

feet from the inches. This is part of the

Suppose you want to create a drawing or architectural program that uses the English system. It

will be convenient to store distances as two numbers, representing feet and inches. The next

example, ENGLSTRC, gives an idea of how this could be done using a structure. This program

will show how two measurements of type can be added together.

Structures

Measurements in the English system.

Here the structure has two members: and . The variable may

for them.

We define two such distances, and , without initializing them, while we initialize another,

 rogram asks the user to enter a distance in feet and inches, and assigns

this distance to

to , obtaining the total distance . Finally the program displays the two initial distances and

Why not? Because there is no routine built into C++ that knows how to add variables of type

. The operator works with built-in types like , but not with types we define

ourselves, like . (However, one of the benefits of using

-

defined data types.)

ENGLSTRC program

that shows how this looks. In this program we want to create a data structure that stores the

-

as the length and width variables.

ENGLAREA, that uses the structure to represent a room.

Structures

This program defines a single variable of type , in the line

It then assigns values to the various members of this structure.

Because one structure is nested inside another, we must apply the dot operator twice to access

the structure members.

In this statement, is the name of the structure variable, as before; is the name of

a member in the outer structure (); and is the name of a member of the inner struc-

ture (member of the member of the

variable this works.

Dot operator and nested structures.

Once values have been assigned to members of , the program calculates the floor area

To find the area, the program converts the length and width from variables of type to

variables of type , , and , representing distances in feet. The values of and are

found by adding the member of to the member divided by

member is converted to type automatically before the addition is performed, and the

result is type . The and variables are then multiplied together to obtain the area.

Structures

Area in feet and inches.

Note that the program converts two distances of type to two distances of type :

the variables and

type (which is defined as two structures of type), to a single floating-point

Converting a value of one type to a value of another is an important aspect of programs that

employ user-defined data types.

How do you initialize a structure variable that itself contains structures? The following state-

ment initializes the variable to the same values it is given in the ENGLAREA program:

Each structure of type , which is embedded in , is initialized separately.

Remember that this involves surrounding the values with braces and separating them with

commas. The first is initialized to

and the second to

These two values are then used to initialize the variable; again, they

are surrounded with braces and separated by commas.

In theory, structures can be nested to any depth. In a program that designs apartment

buildings, you might find yourself with statements like this one:

We must confess to having misled you slightly on the capabilities of structures. true that

structures are usually used to hold data only, and classes are used to hold both data and func-

tions. However, in C++, structures can in fact hold both data and functions. (In C they can hold

only data.) The syntactical distinction between structures and classes in C++ is minimal, so

they can in theory be used almost interchangeably. But most C++ programmers use structures

as we have in this chapter, exclusively for data. Classes are usually used to hold both data and

provide user-defined data types. A dif-

ferent approach to defining your own data type is the enumeration. This feature of C++ is less

crucial than structures. You can write perfectly good object-oriented programs in C++ without

knowing anything about enumerations. However, they are very much in the spirit of C++, in

that, by allowing you to define your own data types, they can simplify and clarify your pro-

gramming.

Enumerated types work when you know in advance a finite (usually short) list of values that a

DAYENUM, that uses an enumeration for the

days of the week:

Structures

An declaration defines the set of all names that will be permissible values of the type.

These permissible values are called enumerators. The type has seven

enumerators: , , , and so on, up to

declaration.

Syntax of specifier.

An enumeration is a list of all possible values. This is unlike the specification of an , for

example, which is given in terms of a range of values. In an you must give a specific

and an .

type as shown, you can define variables of this

type. DAYENUM has two such variables, and , defined in the statement

(In C you must use the keyword before the type name, as in

Structures

Usage of s and s.

Variables of an enumerated type, like and , can be given any of the values listed in

the declaration. In the example we give them the values and . You

that as

are illegal.

You can use the standard arithmetic operators on types. In the program we subtract two

types.

For example, if you have the declaration

then it may not be clear what expressions like or mean.

Enumerations are treated internally as integers. This explains why you can perform arithmetic

and relational operations on them. Ordinarily the first name in the list is

DAYENUM example, the values through

Arithmetic operations on types take place on the integer values. However, although the

compiler knows that your variables are really integers, you must be careful of trying to

take advantage of this fact. If you say

whenever

possible that s are really integers.

Our next example counts the words in a phrase typed in by the user. Unlike the earlier

CHCOUNT example, however,

Instead it counts the places where a string of nonspace characters changes to a space, as shown

in Figure

Operation of the WDCOUNT program.

WDCOUNT: This

example shows an enumeration with only two enumerators.

Structures

The program cycles in a loop, reading characters from the keyboard. It passes over (non-

space) characters until it finds a space. At this point it counts a word. Then it passes over

spaces until it finds a character, and again counts characters until it finds a space. Doing this

requires the program to remember whether in the middle of a word, or in the middle of a

string of spaces. It remembers this with the variable . This variable is defined to be

of type . This type is specified in the statement

Variables of type have only two possible values: and . Notice that the list

starts with the value that indicates false. (We could

also use a variable of type for this purpose.)

The variable is set to when the program starts. When the program encounters the

first nonspace character, it sets to

. Behind the

scenes,

could have used instead of , and instead of

, but this is not good style.

Note also that we need an extra set of braces around the second statement in the program,

so that the will match the first .

Another approach to a yes/no situation such as that in WDCOUNT is to use a variable of type

. This may be a little more straightforward, depending on the situation.

Here are some other examples of enumerated data declarations, to give you a feeling for possi-

ble uses of this feature:

