Chapter 6 Structure Query Language

Chapter 6
Structure Query Language (SQL)

1. Introduction SQL
2. Data Definition Language (DDL)
3. Data Manipulation Language (DML)
4. Data Control Language (DCL)

Structured Query Language(SQL)

6.1 Introduction
Structured Query Language (SQL) is a standard computer language for relational database management and data manipulation. SQL is used to query, insert, update and modify data. Most relational databases support SQL, which is an added benefit for database administrators (DBAs), as they are often required to support databases across several different platforms.
First developed in the early 1970s at IBM by Raymond Boyce and Donald Chamberlin, SQL was commercially released by Relational Software Inc. (now known as Oracle Corporation) in 1979. The current standard SQL version is voluntary, vendor-compliant and monitored by the American National Standards Institute (ANSI). Most major vendors also have proprietary versions that are incorporated and built on ANSI SQL, e.g., SQL*Plus (Oracle), and Transact-SQL (T-SQL) (Microsoft).

One of the most fundamental DBA rites of passage is learning SQL, which begins with writing the first SELECT statement or SQL script without a graphical user interfaces (GUI). Increasingly, relational databases use GUIs for easier database management, and queries can now be simplified with graphical tools, e.g., drag-and-drop wizards. However, learning SQL is imperative because such tools are never as powerful as SQL.

 6.2 What can SQL do?
1. SQL can execute queries against a database .
2. SQL can retrieve data from a database .
3. SQL can insert records in a database .
4. SQL can update records in a database.
5. SQL can delete records from a database.
6. SQL can create new databases .
7. SQL can create new tables in a database.
8. SQL can create stored procedures in a database.
9. SQL can create views in a database .
10. SQL can set permissions on tables, procedures, and views .
6.3 Database Languages

A database system provides a data definition language to specify the database schema and a data manipulation language to express database queries and updates and a data control language to configure security access to relational databases . In practice, the data definition and data manipulation languages are not two separate languages; instead they simply form parts of a single database language, such as the widely used SQL language.

6.3.1 Data Definition Language (DDL)

The SQL DDL allows specification of not only a set of relations, but also information about each relation, including
• The schema for each relation
• The domain of values associated with each attribute
• The integrity constraints
• The set of indices to be maintained for each relation
• The security and authorization information for each relation
• The physical storage structure of each relation on disk

Data Definition Language (DDL): statements are used to define the database structure or schema. Some examples:
· CREATE - to create objects in the database.
· ALTER - alters the structure of the database.
· DROP - delete objects from the database.
· TRUNCATE - remove all records from a table, including all spaces allocated for the records are removed.
· COMMENT - add comments to the data dictionary.
· RENAME - rename an object.

6.3.2 Data Manipulation Language(DML)

A data-manipulation language (DML) is a language that enables users to access or manipulate data as organized by the appropriate data model.
Data manipulation is
• The retrieval of information stored in the database
• The insertion of new information into the database
• The deletion of information from the database
• The modification of information stored in the database
There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those data.
• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data are needed without specifying how to get those data.
Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database system has to figure out an efficient means of accessing data. The DML component of the SQL language is nonprocedural.
A query is a statement requesting the retrieval of information. The portion of a DML that involves information retrieval is called a query language. Although technically incorrect, it is common practice to use the terms query language and data manipulation
language synonymously.

Data Manipulation Language (DML) statements are used for managing data within schema objects. Some examples:
· SELECT - retrieve data from the a database.
· INSERT - insert data into a table.
· UPDATE - updates existing data within a table.
· DELETE - deletes all records from a table, the space for the records remain.
· MERGE - UPSERT operation (insert or update).
· CALL - call a PL/SQL or Java subprogram.
· EXPLAIN PLAN - explain access path to data.
· LOCK TABLE - control concurrency.

6.3.3 Data Control Language:

Data Control Language (DCL) :statement is a subset of the Structured Query Language (SQL) that allows database administrators to configure security access to relational databases. Some examples:
· GRANT - gives user's access privileges to database.
· REVOKE - withdraw access privileges given with the GRANT command.
6.4 SQL - Data Types
SQL data type is an attribute that specifies type of data of any object. Each column, variable and expression has related data type in SQL.
You would use these data types while creating your tables. You would choose a particular data type for a table column based on your requirement.
The SQL standard supports a variety of built-in domain types, including:
• char(n): A fixed-length character string with user-specified length n. The full form, character, can be used instead.
• varchar(n): A variable-length character string with user-specified maximum length n. The full form, character varying, is equivalent.
• int: An integer (a finite subset of the integers that is machine dependent). The full form, integer, is equivalent.
• smallint: A small integer (a machine-dependent subset of the integer domain type).
• numeric(p, d): A fixed-point number with user-specified precision. The number consists of p digits (plus a sign), and d of the p digits are to the right of the decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither 444.5 or 0.32 can be stored exactly in a field of this type.
• real, double precision: Floating-point and double-precision floating-point numbers with machine-dependent precision.
• float(n): A floating-point number, with precision of at least n digits.
• date: A calendar date containing a (four-digit) year, month, and day of the month.
• time: The time of day, in hours, minutes, and seconds. A variant, time(p), can be used to specify the number of fractional digits for seconds (the default being 0). It is also possible to store time zone information along with the time.
• timestamp: A combination of date and time. A variant, timestamp(p), can be used to specify the number of fractional digits for seconds (the default here being 6).
Date and time values can be specified like this:
date ’2001-04-25’
time ’09:30:00’
timestamp ’2001-04-25 10:29:01.45’
Dates must be specified in the format year followed by month followed by day, as shown. The seconds field of time or timestamp can have a fractional part, as in the timestamp above. We can use an expression of the form cast e as t to convert a character string (or string valued expression) e to the type t, where t is one of date, time,
or timestamp. The string must be in the appropriate format as illustrated at the beginning of this paragraph.
To extract individual fields of a date or time value d, we can use extract (field from d), where field can be one of year, month, day, hour, minute, or second.

6.4.1 SQL Data Type Quick Reference
However, different databases offer different choices for the data type definition.
The following table shows some of the common names of data types between the various database platforms:
	Data type
	Access
	SQL Server
	Oracle
	MySQL
	PostgreSQL

	Boolean
	Yes/No
	Bit
	Byte
	N/A
	Boolean

	Integer
	Number (integer)
	Int
	Number
	Int
Integer
	Int
Integer

	Float
	Number (single)
	Float
Real
	Number
	Float
	Numeric

	Currency
	Currency
	Money	
	N/A
	N/A
	Money

	string (fixed)
	N/A
	Char
	Char
	Char
	Char

	string (variable)
	Text (<256)
Memo (65k+)
	Varchar
	Varchar
Varchar2
	Varchar
	Varchar

	binary object
	OLE Object Memo
	Binary (fixed up to 8K)
Varbinary (<8K)
Image (<2GB)
	Long
Raw
	Blob
Text
	Binary
Varbinary

 Note: Data types might have different names in different database. And even if the name is the same, the size and other details may be different! Always check the documentation!
6.5 Data Definition Language (DDL) command
6.5.1. Create Command
 create is a DDL command used to create a table or a database.
6.5.1.1 Creating a Database
To create a database in RDBMS, create command is uses. Following is the Syntax,
create database database-name;
Example for Creating Database
create database Test;
The above command will create a database named Test.
6.5.1.2 Creating a Table
create command is also used to create a table. We can specify names and data types of various columns along. Following is the Syntax,
create table table-name
{
 column-name1 datatype1,
 column-name2 datatype2,
 column-name3 datatype3,
 column-name4 datatype4
};
create table command will tell the database system to create a new table with given table name and column information.

Example for creating Table
create table Student(id int, name varchar, age int);
The above command will create a new table Student in database system with 3 columns, namely id, name and age.

6.5.2 Alter command
alter command is used for alteration of table structures. There are various uses of alter command, such as,
· to add a column to existing table
· to rename any existing column
· to change data type of any column or to modify its size.
· alter is also used to drop a column.

6.5.2.1 To Add Column to existing Table
Using alter command we can add a column to an existing table. Following is the Syntax,
alter table table-name add(column-name datatype);
Here is an Example for this,
alter table Student add(address char);
The above command will add a new column address to the Student table

6.5.2.2 To Add Multiple Column to existing Table
Using alter command we can even add multiple columns to an existing table. Following is the Syntax,
alter table table-name add(column-name1 datatype1, column-name2 datatype2, column-name3 datatype3);
Here is an Example for this,
alter table Student add(father-name varchar(60), mother-name varchar(60), dob date);
The above command will add three new columns to the Student table
6.5.2.3 To Add column with Default Value
alter command can add a new column to an existing table with default values. Following is the Syntax,
alter table table-name add(column-name1 datatype1 default data);
Here is an Example for this,
alter table Student add(dob date default '1-Jan-99');
The above command will add a new column with default value to the Student table

6.5.2.4 To Modify an existing Column
alter command is used to modify data type of an existing column . Following is the Syntax,
alter table table-name modify(column-name datatype);
Here is an Example for this,
alter table Student modify(address varchar(30));
The above command will modify address column of the Student table
6.5.2.5 To Rename a column
Using alter command you can rename an existing column. Following is the Syntax,
alter table table-name rename old-column-name to column-name;
Here is an Example for this,
alter table Student rename address to Location;
The above command will rename address column to Location.
6.5.2.6 To Drop a Column
alter command is also used to drop columns also. Following is the Syntax,
alter table table-name drop(column-name);
Here is an Example for this,
alter table Student drop(address);
The above command will drop address column from the Student table
6.5.3 Truncate Command
truncate command removes all records from a table. But this command will not destroy the table's structure. When we apply truncate command on a table its Primary key is initialized. Following is its Syntax,
truncate table table-name
Here is an Example explaining it.
truncate table Student;
The above query will delete all the records of Student table.
truncate command is different from delete command. delete command will delete all the rows from a table whereas truncate command re-initializes a table(like a newly created table).
For eg. If you have a table with 10 rows and an auto_increment primary key, if you use delete command to delete all the rows, it will delete all the rows, but will not initialize the primary key, hence if you will insert any row after using delete command, the auto_increment primary key will start from 11. But in case of truncate command, primary key is re-initialized.

6.5.4 Drop command
drop query completely removes a table from database. This command will also destroy the table structure. Following is its Syntax,
drop table table-name
Here is an Example explaining it.
drop table Student;
The above query will delete the Student table completely. It can also be used on Databases. For Example, to drop a database,
 drop database Test;
The above query will drop a database named Test from the system.

6.5.5 Rename query
rename command is used to rename a table. Following is its Syntax,
rename table old-table-name to new-table-name
Here is an Example explaining it.
rename table Student to Student-record;
The above query will rename Student table to Student-record.
 6.6 Data Manipulation Language(DML) command
Data Manipulation Language (DML) statements are used for managing data in database. DML commands are not auto-committed. It means changes made by DML command are not permanent to database, it can be rolled back.

6.6.1) INSERT command
Insert command is used to insert data into a table. Following is its general syntax,
INSERT into table-name values(data1,data2,..)
Lets see an example,
Consider a table Student with following fields.
	S_id
	S_Name
	age

INSERT into Student values(101,'Adam',15);
The above command will insert a record into Student table.
	S_id
	S_Name
	age

	101
	Adam
	15

Example to Insert NULL value to a column
Both the statements below will insert NULL value into age column of the Student table.
INSERT into Student(id,name) values(102,'Alex');
Or,
INSERT into Student values(102,'Alex',null);
The above command will insert only two column value other column is set to null.
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	

Example to Insert Default value to a column
INSERT into Student values(103,'Chris',default)
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	

	103
	Chris
	14

Suppose the age column of student table has default value of 14.
Also, if you run the below query, it will insert default value into the age column, whatever the default value may be.
INSERT into Student values(103,'Chris')
6.6.2) UPDATE command
Update command is used to update a row of a table. Following is its general syntax,
UPDATE table-name set column-name = value where condition;
Let's see an example,
update Student set age=18 where s_id=102;
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	18

	103
	Chris
	14

Example to Update multiple columns
UPDATE Student set s_name='Abhi',age=17 where s_id=103;
The above command will update two columns of a record.
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	18

	103
	Abhi
	17

6.6.3) Delete command
Delete command is used to delete data from a table. Delete command can also be used with condition to delete a particular row. Following is its general syntax,
DELETE from table-name;

Example to Delete all Records from a Table
DELETE from Student;
The above command will delete all the records from Student table.

Example to Delete a particular Record from a Table
Consider the following Student table
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	18

	103
	Abhi
	17

DELETE from Student where s_id=103;
The above command will delete the record where s_id is 103 from Student table.
	S_id
	S_Name
	age

	101
	Adam
	15

	102
	Alex
	18

6.7 WHERE clause
Where clause is used to specify condition while retrieving data from table. Where clause is used mostly with Select, Update and Delete query. If condition specified by where clause is true then only the result from table is returned.

Syntax for WHERE clause
SELECT column-name1,
 column-name2,
 column-name3,
 column-nameN
from table-name WHERE [condition];
Example using WHERE clause
Consider a Student table,
	s_id
	s_Name
	Age
	address

	101
	Adam
	15
	Noida

	102
	Alex
	18
	Delhi

	103
	Abhi
	17
	Rohtak

	104
	Ankit
	22
	Panipat

Now we will use a SELECT statement to display data of the table, based on a condition, which we will add to the SELECT query using WHERE clause.
SELECT s_id,
 s_name,
 age,
 address
from Student WHERE s_id=101;
	s_id
	s_Name
	Age
	address

	101
	Adam
	15
	Noida

6.8 SELECT Query
Select query is used to retrieve data from a tables. It is the most used SQL query. We can retrieve complete tables, or partial by mentioning conditions using WHERE clause.

Syntax of SELECT Query
SELECT column-name1, column-name2, column-name3, column-nameN from table-name;
Example for SELECT Query
Conside the following Student table,
	S_id
	S_Name
	Age
	address

	101
	Adam
	15
	Noida

	102
	Alex
	18
	Delhi

	103
	Abhi
	17
	Rohtak

	104
	Ankit
	22
	Panipat

SELECT s_id, s_name, age from Student.
The above query will fetch information of s_id, s_name and age column from Student table
	S_id
	S_Name
	Age

	101
	Adam
	15

	102
	Alex
	18

	103
	Abhi
	17

	104
	Ankit
	22

Example to Select all Records from Table
A special character asterisk * is used to address all the data(belonging to all columns) in a query. SELECT statement uses * character to retrieve all records from a table.
SELECT * from student;
The above query will show all the records of Student table, that means it will show complete Student table as result.

	S_id
	S_Name
	Age
	address

	101
	Adam
	15
	Noida

	102
	Alex
	18
	Delhi

	103
	Abhi
	17
	Rohtak

	104
	Ankit
	22
	Panipat

Example to Select particular Record based on Condition
SELECT * from Student WHERE s_name = 'Abhi';
	103
	Abhi
	17
	Rohtak

Example to Perform Simple Calculations using Select Query
Consider the following Employee table.
	Eid
	Name
	Age
	Salary

	101
	Adam
	26
	5000

	102
	Ricky
	42
	8000

	103
	Abhi
	22
	10000

	104
	Rohan
	35
	5000

SELECT eid, name, salary+3000 from Employee;
The above command will display a new column in the result, showing 3000 added into existing salaries of the employees.
	Eid
	Name
	salary+3000

	101
	Adam
	8000

	102
	Ricky
	11000

	103
	Abhi
	13000

	104
	Rohan
	8000

6.9 Like clause
Like clause is used as condition in SQL query. Like clause compares data with an expression using wildcard operators. It is used to find similar data from the table.

Wildcard operators
There are two wildcard operators that are used in like clause.
· Percent sign % : represents zero, one or more than one character.
· Underscore sign _ : represents only one character.
Example of LIKE clause
Consider the following Student table.
	s_id
	s_Name
	Age

	101
	Adam
	15

	102
	Alex
	18

	103
	Abhi
	17

SELECT * from Student where s_name like 'A%';
The above query will return all records where s_name starts with character 'A'.
	s_id
	s_Name
	Age

	101
	Adam
	15

	102
	Alex
	18

	103
	Abhi
	17

Example:
SELECT * from Student where s_name like '_d%';
The above query will return all records from Student table where s_name contain 'd' as second character.
	s_id
	s_Name
	Age

	101
	Ad am
	15

Example:
SELECT * from Student where s_name like '%x';
The above query will return all records from Student table where s_name contain 'x' as last character.
	s_id
	s_Name
	Age

	102
	Alex
	18

6.9 Order By Clause
Order by clause is used with Select statement for arranging retrieved data in sorted order. The Order by clause by default sort data in ascending order. To sort data in descending order DESC keyword is used with Order by clause.

Syntax of Order By
SELECT column-list|* from table-name order by asc|desc;

Example using Order by
Consider the following Emp table,
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SELECT * from Emp order by salary;
The above query will return result in ascending order of the salary.
	Eid
	Name
	Age
	salary

	403
	Rohan
	34
	6000

	402
	Shane
	29
	8000

	405
	Tiger
	35
	8000

	401
	Anu
	22
	9000

	404
	Scott
	44
	10000

Example of Order by DESC
Consider the Emp table described above,
SELECT * from Emp order by salary DESC;

The above query will return result in descending order of the salary.
	Eid
	Name
	age
	Salary

	404
	Scott
	44
	10000

	401
	Anu
	22
	9000

	405
	Tiger
	35
	8000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

6.10 HAVING Clause
having clause is used with SQL Queries to give more precise condition for a statement. It is used to mention condition in Group based SQL functions, just like WHERE clause.
Syntax for having will be,
select column_name, function(column_name)
FROM table_name
WHERE column_name condition
GROUP BY column_name
HAVING function(column_name) condition

Example of HAVING Statement
Consider the following Sale table.

	oid
	order_name
	previous_balance
	customer

	11
	ord1
	2000
	Alex

	12
	ord2
	1000
	Adam

	13
	ord3
	2000
	Abhi

	14
	ord4
	1000
	Adam

	15
	ord5
	2000
	Alex

Suppose we want to find the customer whose previous_balance sum is more than 3000.
We will use the below SQL query,
SELECT *
from sale group customer
having sum(previous_balance) > 3000
Result will be,
	oid
	order_name
	previous_balance
	customer

	11
	ord1
	2000
	Alex

6.11 Distinct keyword
The distinct keyword is used with Select statement to retrieve unique values from the table. Distinct removes all the duplicate records while retrieving from database.

Syntax for DISTINCT Keyword
SELECT distinct column-name from table-name;

Example
Consider the following Emp table.
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	5000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	10000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

select distinct salary from Emp;
The above query will return only the unique salary from Emp table
	salary

	5000

	8000

	10000

6.12 AND & OR operator
AND and OR operators are used with Where clause to make more precise conditions for fetching data from database by combining more than one condition together.

6.12.1 AND operator
AND operator is used to set multiple conditions with Where clause.

Example of AND
Consider the following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	5000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	12000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	9000

SELECT * from Emp WHERE salary < 10000 AND age > 25
The above query will return records where salary is less than 10000 and age greater than 25.
	Eid
	Name
	Age
	Salary

	402
	Shane
	29
	8000

	405
	Tiger
	35
	9000

6.12.2 OR operator
OR operator is also used to combine multiple conditions with Where clause. The only difference between AND and OR is their behavior. When we use AND to combine two or more than two conditions, records satisfying all the condition will be in the result. But in case of OR, at least one condition from the conditions specified must be satisfied by any record to be in the result.

Example of OR
Consider the following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	5000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	12000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	9000

SELECT * from Emp WHERE salary > 10000 OR age > 25
The above query will return records where either salary is greater than 10000 or age greater than 25.
	402
	Shane
	29
	8000

	403
	Rohan
	34
	12000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	9000

6.13 SQL Constraints
SQl Constraints are rules used to limit the type of data that can go into a table, to maintain the accuracy and integrity of the data inside table.
Constraints can be divided into following two types,
· Column level constraints : limits only column data
· Table level constraints : limits whole table data
Constraints are used to make sure that the integrity of data is maintained in the database. Following are the most used constraints that can be applied to a table.
· NOT NULL
· UNIQUE
· PRIMARY KEY
· FOREIGN KEY
· CHECK
· DEFAULT

6.13.1 NOT NULL Constraint
NOT NULL constraint restricts a column from having a NULL value. Once NOT NULL constraint is applied to a column, you cannot pass a null value to that column. It enforces a column to contain a proper value. One important point to note about NOT NULL constraint is that it cannot be defined at table level.

Example using NOT NULL constraint
CREATE table Student(s_id int NOT NULL, Name varchar(60), Age int);
The above query will declare that the s_id field of Student table will not take NULL value.

6.13.2 UNIQUE Constraint
UNIQUE constraint ensures that a field or column will only have unique values. A UNIQUE constraint field will not have duplicate data. UNIQUE constraint can be applied at column level or table level.

Example using UNIQUE constraint when creating a Table (Table Level)
CREATE table Student(s_id int NOT NULL UNIQUE, Name varchar(60), Age int);
The above query will declare that the s_id field of Student table will only have unique values and won't take NULL value.

Example using UNIQUE constraint after Table is created (Column Level)
ALTER table Student add UNIQUE(s_id);
The above query specifies that s_id field of Student table will only have unique value.

6.13.3 Primary Key Constraint
Primary key constraint uniquely identifies each record in a database. A Primary Key must contain unique value and it must not contain null value. Usually Primary Key is used to index the data inside the table.

Example using PRIMARY KEY constraint at Table Level
CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);
The above command will creates a PRIMARY KEY on the s_id.

Example using PRIMARY KEY constraint at Column Level
ALTER table Student add PRIMARY KEY (s_id);
The above command will creates a PRIMARY KEY on the s_id.

6.13.4 Foreign Key Constraint
FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict actions that would destroy links between tables. To understand FOREIGN KEY, let's see it using two table.
Customer_Detail Table :
	c_id
	Customer_Name
	address

	101
	Adam
	Noida

	102
	Alex
	Delhi

	103
	Stuart
	Rohtak

Order_Detail Table :
	Order_id
	Order_Name
	c_id

	10
	Order1
	101

	11
	Order2
	103

	12
	Order3
	102

[bookmark: _GoBack]In Customer_Detail table, c_id is the primary key which is set as foreign key in Order_Detail table. The value that is entered in c_id which is set as foreign key in Order_Detail table must be present in Customer_Detail table where it is set as primary key. This prevents invalid data to be inserted into c_id column of Order_Detail table.

Example using FOREIGN KEY constraint at Table Level
CREATE table Order_Detail(order_id int PRIMARY KEY,
order_name varchar(60) NOT NULL,
c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id));
In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column of Customer_Detail.

Example using FOREIGN KEY constraint at Column Level
ALTER table Order_Detail add FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

Behavior of Foreign Key Column on Delete
There are two ways to maintain the integrity of data in Child table, when a particular record is deleted in main table. When two tables are connected with Foreign key, and certain data in the main table is deleted, for which record exit in child table too, then we must have some mechanism to save the integrity of data in child table.
[image: foriegn key behaviour on delete - cascade and Null]
· On Delete Cascade : This will remove the record from child table, if that value of foreign key is deleted from the main table.
· On Delete Null : This will set all the values in that record of child table as NULL, for which the value of foreign key is selected from the main table.
· If we don't use any of the above, then we cannot delete data from the main table for which data in child table exists. We will get an error if we try to do so.
ERROR : Record in child table exist

6.13.4 CHECK Constraint
CHECK constraint is used to restrict the value of a column between a range. It performs check on the values, before storing them into the database. Its like condition checking before saving data into a column.

Example using CHECK constraint at Table Level
create table Student(s_id int NOT NULL CHECK(s_id > 0),
Name varchar(60) NOT NULL,
Age int);
The above query will restrict the s_id value to be greater than zero.

Example using CHECK constraint at Column Level
ALTER table Student add CHECK(s_id > 0);
6.14 SQL Functions
SQL provides many built-in functions to perform operations on data. These functions are useful while performing mathematical calculations, string concatenations, sub-strings etc. SQL functions are divided into two categories,
· Aggregate Functions
· Scalar Functions

6.14.1 Aggregate Functions
These functions return a single value after calculating from a group of values. Following are some frequently used Aggregate functions.

1) AVG()
Average returns average value after calculating from values in a numeric column.
Its general Syntax is,
SELECT AVG(column_name) from table_name

Example using AVG()
Consider following Emp table
	Eid	
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query to find average of salary will be,
SELECT avg(salary) from Emp;
Result of the above query will be,
	avg(salary)

	8200

2) COUNT()
Count returns the number of rows present in the table either based on some condition or without condition.
Its general Syntax is,
SELECT COUNT(column_name) from table-name

Example using COUNT()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query to count employees, satisfying specified condition is,
SELECT COUNT(name) from Emp where salary = 8000;
Result of the above query will be,
	count(name)

	2

Example of COUNT(distinct)
Consider following Emp table

	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query is,
SELECT COUNT(distinct salary) from emp;
Result of the above query will be,
	count(distinct salary)

	4

3) FIRST()
First function returns first value of a selected column
Syntax for FIRST function is,
SELECT FIRST(column_name) from table-name

Example of FIRST()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query
SELECT FIRST(salary) from Emp;
Result will be,
	first(salary)

	9000

4) LAST()
LAST return the return last value from selected column
Syntax of LAST function is,
SELECT LAST(column_name) from table-name

Example of LAST()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query will be,
SELECT LAST(salary) from emp;
Result of the above query will be,
	last(salary)

	8000

5) MAX()
MAX function returns maximum value from selected column of the table.
Syntax of MAX function is,
SELECT MAX(column_name) from table-name

Example of MAX()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query to find Maximum salary is,
SELECT MAX(salary) from emp;
Result of the above query will be,
	MAX(salary)

	10000

6) MIN()
MIN function returns minimum value from a selected column of the table.
Syntax for MIN function is,
SELECT MIN(column_name) from table-name

Example of MIN()
Consider following Emp table,
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query to find minimum salary is,
SELECT MIN(salary) from emp;
Result will be,
	MIN(salary)

	8000

7) SUM()
SUM function returns total sum of a selected columns numeric values.
Syntax for SUM is,
SELECT SUM(column_name) from table-name
	

Example of SUM()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query to find sum of salaries will be,
SELECT SUM(salary) from emp;
Result of above query is,
	SUM(salary)

	41000

6.14.2 Scalar Functions
Scalar functions return a single value from an input value. Following are some frequently used Scalar Functions.

1) UCASE()
UCASE function is used to convert value of string column to Uppercase character.
Syntax of UCASE,
SELECT UCASE(column_name) from table-name

Example of UCASE()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	Anu
	22
	9000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	6000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query for using UCASE is,
SELECT UCASE(name) from emp;
Result is,
	UCASE(name)

	ANU

	SHANE

	ROHAN

	SCOTT

	TIGER

2) LCASE()
LCASE function is used to convert value of string column to Lowecase character.
Syntax for LCASE is,
SELECT LCASE(column_name) from table-name

Example of LCASE()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	anu
	22
	9000

	402
	shane
	29
	8000

	403
	rohan
	34
	6000

	404
	scott
	44
	10000

	405
	Tiger
	35
	8000

SQL query for converting string value to Lower case is,
SELECT LCASE(name) from emp;
Result will be,
	LCASE(name)

	anu

	shane

	rohan

	scott

	tiger

3) MID()
MID function is used to extract substrings from column values of string type in a table.
Syntax for MID function is,
SELECT MID(column_name, start, length) from table-name
Example of MID()
	Eid
	Name
	Age
	Salary

	401
	anu
	22
	9000

	402
	shane
	29
	8000

	403
	rohan
	34
	6000

	404
	scott
	44
	10000

	405
	Tiger
	35
	8000

Consider following Emp table
SQL query will be,
select MID(name,2,2) from emp;
Result will come out to be,
	MID(name,2,2)

	Nu

	ha

	oh

	co

	ig

4) ROUND()
ROUND function is used to round a numeric field to number of nearest integer. It is used on Decimal point values. Syntax of Round function is,
SELECT ROUND(column_name, decimals) from table-name

Example of ROUND()
Consider following Emp table
	Eid
	Name
	Age
	Salary

	401
	anu
	22
	9000.67

	402
	shane
	29
	8000.98

	403
	rohan
	34
	6000.45

	404
	scott
	44
	10000

	405
	Tiger
	35
	8000.01

SQL query is,
SELECT ROUND(salary) from emp;
Result will be,

	ROUND(salary)

	9001

	8001

	6000

	10000

	8000

6.15 Join in SQL
SQL Join is used to fetch data from two or more tables, which is joined to appear as single set of data. SQL Join is used for combining column from two or more tables by using values common to both tables. Join Keyword is used in SQL queries for joining two or more tables. Minimum required condition for joining table, is(n-1) where n, is number of tables. A table can also join to itself known as, Self Join.

Types of Join
The following are the types of JOIN that we can use in SQL.
· Inner
· Outer
· Left
· Right

6.15.1 Cross JOIN or Cartesian Product
This type of JOIN returns the Cartesian product of rows of from the tables in Join. It will return a table which consists of records which combines each row from the first table with each row of the second table.
Cross JOIN Syntax is,
SELECT column-name-list
from table-name1
CROSS JOIN
table-name2;

Example of Cross JOIN
	ID
	NAME

	1
	abhi

	2
	adam

	4
	alex

The class table,
The class_info table,	
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

Cross JOIN query will be,
SELECT *
 from class,
 cross JOIN class_info;
The result table will look like,
	ID
	NAME
	ID
	Address

	1
	abhi
	1
	DELHI

	2
	adam
	1
	DELHI

	4
	alex
	1
	DELHI

	1
	abhi
	2
	MUMBAI

	2
	adam
	2
	MUMBAI

	4
	alex
	2
	MUMBAI

	1
	abhi
	3
	CHENNAI

	2
	adam
	3
	CHENNAI

	4
	alex
	3
	CHENNAI

6.15.2 INNER Join or EQUI Join
This is a simple JOIN in which the result is based on matched data as per the equality condition specified in the query.
Inner Join Syntax is,
SELECT column-name-list
from table-name1
INNER JOIN
table-name2
WHERE table-name1.column-name = table-name2.column-name;

Example of Inner JOIN
The class table,
	ID
	NAME

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

The class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

Inner JOIN query will be,
SELECT * from class, class_info where class.id = class_info.id;
	ID
	NAME
	ID
	Address

	1
	abhi
	1
	DELHI

	2
	adam
	2
	MUMBAI

	3
	alex
	3
	CHENNAI

The result table will look like,

6.15.3 Natural JOIN
Natural Join is a type of Inner join which is based on column having same name and same data type present in both the tables to be joined.
Natural Join Syntax is,
SELECT *
from table-name1
NATURAL JOIN
table-name2;

Example of Natural JOIN
The class table,

	ID
	NAME

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

The class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

Natural join query will be,
SELECT * from class NATURAL JOIN class_info;
The result table will look like,
	ID
	NAME
	Address

	1
	abhi
	DELHI

	2
	adam
	MUMBAI

	3
	alex
	CHENNAI

In the above example, both the tables being joined have ID column(same name and same data type), hence the records for which value of ID matches in both the tables will be the result of Natural Join of these two tables.

6.15.5 Outer JOIN
Outer Join is based on both matched and unmatched data. Outer Joins subdivide further into,
· Left Outer Join
· Right Outer Join
· Full Outer Join

6.15.5.1 Left Outer Join
The left outer join returns a result table with the matched data of two tables then remaining rows of the lefttable and null for the right table's column.
Left Outer Join syntax is,
SELECT column-name-list
from table-name1
LEFT OUTER JOIN
table-name2
on table-name1.column-name = table-name2.column-name;
Left outer Join Syntax for Oracle is,
select column-name-list
from table-name1,
table-name2
on table-name1.column-name = table-name2.column-name(+);

Example of Left Outer Join
The class table,
	ID
	NAME

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

	5
	ashish

The class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

	7
	NOIDA

	8
	PANIPAT

Left Outer Join query will be,
SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id=class_info.id);
The result table will look like,
	ID
	NAME
	ID
	Address

	1
	abhi
	1
	DELHI

	2
	adam
	2
	MUMBAI

	3
	alex
	3
	CHENNAI

	4
	anu
	null
	null

	5
	ashish
	null
	null

	
6.15.5.2 Right Outer Join
The right outer join returns a result table with the matched data of two tables then remaining rows of the right table and null for the left table's columns.
Right Outer Join Syntax is,
select column-name-list
from table-name1
RIGHT OUTER JOIN
table-name2
on table-name1.column-name = table-name2.column-name;
Right outer Join Syntax for Oracle is,
select column-name-list
from table-name1,
table-name2
on table-name1.column-name(+) = table-name2.column-name;

Example of Right Outer Join
The class table,
	ID
	NAME

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

	5
	ashish

The class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

	7
	NOIDA

	8
	PANIPAT

Right Outer Join query will be,
SELECT * FROM class RIGHT OUTER JOIN class_info on (class.id=class_info.id);
The result table will look like,
	ID
	NAME
	ID
	Address

	1
	abhi
	1
	DELHI

	2
	adam
	2
	MUMBAI

	3
	alex
	3
	CHENNAI

	null
	null
	7
	NOIDA

	null
	null
	8
	PANIPAT

6.15.3 Full Outer Join
The full outer join returns a result table with the matched data of two table then remaining rows of both left table and then the right table.
Full Outer Join Syntax is,
select column-name-list
from table-name1
FULL OUTER JOIN
table-name2
on table-name1.column-name = table-name2.column-name;
Example of Full outer join is,
The class table,
	ID	
	NAME

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

	5
	ashish

The class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

	7
	NOIDA

	8
	PANIPAT

Full Outer Join query will be like,
SELECT * FROM class FULL OUTER JOIN class_info on (class.id=class_info.id);
The result table will look like,
	ID
	NAME
	ID
	Address

	1
	abhi
	1
	DELHI

	2
	adam
	2
	MUMBAI

	3
	alex
	3
	CHENNAI

	4
	anu
	null
	null

	5
	ashish
	null
	null

	Null
	null
	7
	NOIDA

	Null
	null
	8
	PANIPAT

6.16 SQL Alias
Alias is used to give an alias name to a table or a column. This is quite useful in case of large or complex queries. Alias is mainly used for giving a short alias name for a column or a table with complex names.
Syntax of Alias for table names,
SELECT column-name
from table-name
as alias-name
Following is an Example using Alias,
SELECT * from Employee_detail as ed;
Alias syntax for columns will be like,
SELECT
column-name as alias-name
fromtable-name
	

	ID
	Name

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

	5
	ashish

Example using alias for columns,
SELECT customer_id as cid from Emp;
Example of Alias in SQL Query
Consider the following two tables,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

	7
	NOIDA

	8
	PANIPAT

The class table,The class_info table,

Below is the Query to fetch data from both the tables using SQL Alias,
SELECT C.id, C.Name, Ci.Address from Class as C, Class_info as Ci where C.id=Ci.id;
Result table look like,
	ID
	Name
	Address

	1
	abhi
	DELHI

	2
	adam
	MUMBAI

	3
	alex
	CHENNAI

6.17 Set Operation in SQL
SQL supports few Set operations to be performed on table data. These are used to get meaningful results from data, under different special conditions.

6.17.1 Union
UNION is used to combine the results of two or more Select statements. However it will eliminate duplicate rows from its result set. In case of union, number of columns and data type must be same in both the tables.
[image: union in sql]

Example of UNION
The First table,
	ID
	Name

	1
	abhi

	2
	adam

The Second table,
	ID
	Name

	2
	adam

	3
	Chester

Union SQL query will be,
select * from First
UNION
select * from second
The result table will look like,
	ID
	NAME

	1
	abhi

	2
	adam

	3
	Chester

Union All
This operation is similar to Union. But it also shows the duplicate rows.
[image: union all in sql]
Example of Union All
The First table,
	ID
	NAME

	1
	abhi

	2
	adam

The Second table,
	ID
	NAME

	2
	adam

	3
	Chester

Union All query will be like,
select * from First
UNION ALL
select * from second
The result table will look like,
	ID
	NAME

	1
	abhi

	2
	adam

	2
	adam

	3
	Chester

6.17. Intersect
Intersect operation is used to combine two SELECT statements, but it only returns the records which are common from both SELECT statements. In case of Intersect the number of columns and data type must be same. MySQL does not support INTERSECT operator.
[image: intersect in sql]
Example of Intersect
The First table,
	ID
	NAME

	1
	Abhi

	2
	adam

The Second table,
	ID
	NAME

	2
	adam

	3
	Chester

Intersect query will be,
select * from First
INTERSECT
select * from second
The result table will look like
	ID
	NAME

	2
	adam

6.17.4 Minus
Minus operation combines result of two Select statements and return only those result which belongs to first set of result. MySQL does not support INTERSECT operator.
[image: minus in sql]
Example of Minus
The First table,
	ID
	NAME

	1
	Abhi

	2
	Adam

The Second table,
	ID
	NAME

	2
	adam

	3
	Chester

Minus query will be,
select * from First
MINUS
select * from second
The result table will look like,
	ID
	NAME

	1
	Abhi

6.18 SQL Sequence
Sequence is a feature supported by some database systems to produce unique values on demand. Some DBMS like MySQL supports AUTO_INCREMENT in place of Sequence. AUTO_INCREMENT is applied on columns, it automatically increments the column value by 1 each time a new record is entered into the table. Sequence is also somewhat similar to AUTO_INCREMENT but its has some extra features.

Creating Sequence
Syntax to create sequences is,
CREATE Sequence sequence-name
start with initial-value
increment by increment-value
maxvalue maximum-value
cycle|nocycle
initial-value specifies the starting value of the Sequence, increment-value is the value by which sequence will be incremented and maxvalue specifies the maximum value until which sequence will increment itself.cycle specifies that if the maximum value exceeds the set limit, sequence will restart its cycle from the begining. No cycle specifies that if sequence exceeds maxvalue an error will be thrown.

Example to create Sequence
The sequence query is following
CREATE Sequence seq_1
start with 1
increment by 1
maxvalue 999
cycle ;
Example to use Sequence
The class table,
	ID
	NAME

	1
	abhi

	2
	adam

	4
	alex

The sql query will be,
INSERT into class value(seq_1.nextval,'anu');
Result table will look like,
	ID	
	NAME

	1
	abhi

	2
	adam

	4
	Alex

	1
	Anu

Once you use nextval the sequence will increment even if you don't Insert any record into the table.
6.19 SQL View
A view in SQL is a logical subset of data from one or more tables. View is used to restrict data access.
Syntax for creating a View,
CREATE or REPLACE view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Example of Creating a View
Consider following Sale table,
	Oid
	order_name
	previous_balance
	Customer

	11
	ord1
	2000
	Alex

	12
	ord2
	1000
	Adam

	13
	ord3
	2000
	Abhi

	14
	ord4
	1000
	Adam

	15
	ord5
	2000
	Alex

SQL Query to Create View
CREATE or REPLACE view sale_view as select * from Sale where customer = 'Alex';
The data fetched from select statement will be stored in another object called sale_view. We can use create seperately and replace too but using both together works better.

Example of Displaying a View
Syntax of displaying a view is similar to fetching data from table using Select statement.
SELECT * from sale_view;

6.19.1 Force View Creation
force keyword is used while creating a view. This keyword force to create View even if the table does not exist. After creating a force View if we create the base table and enter values in it, the view will be automatically updated.
Syntax for forced View is,
CREATE or REPLACE force view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

6.19.2 Update a View
Update command for view is same as for tables.
Syntax to Update a View is,
UPDATE view-name
set value
WHERE condition;
If we update a view it also updates base table data automatically.

6.19.3 Read-Only View
We can create a view with read-only option to restrict access to the view.
Syntax to create a view with Read-Only Access
CREATE or REPLACE force view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition with read-only
The above syntax will create view for read-only purpose, we cannot Update or Insert data into read-only view. It will throw an error.
Types of View
There are two types of view,
· Simple View
· Complex View
	Simple View
	Complex View

	Created from one table
	Created from one or more table

	Does not contain functions
	Contain functions

	Does not contain groups of data
	Contains groups of data

100

image3.jpeg

image4.jpeg

image5.jpeg

image1.gif
Deleting Foriegn Key

Cascade Null
(on Delete cascade) (on Delete Null)

image2.jpeg

