Chapter Two Addressing Data Memory

DS: 05D10H
Offset: 0016H +
Address of data item: 05D26H

Assume the address 0SD26H contain 4AH, the processor now extract the

4AH at address 05SD26H and copy it into AL register.

An instruction may also access more than one byte at a time

EX: Suppose an instruction is to store the content of the AX register (0248H) in

two adjacent byte in the DS beginning at offset 0016H.

The symbolic code MOV [0016], AX

The processor stores the two byte in memory in revered byte sequence as
Content of AX: 02 48

Offset in DS: 0017 0016

Another instruction, MOV_AX, [0016], subsequently could retrieve these

byte by copy them from memory back into AX.

The operation reverses (and corrects) the byte in AX as: 02 T I

48
Number of Operands

Operands specify the value an instruction is to operate on, and where the result
is to be stored. Instruction sets are classified by the number of operands used.

An instruction may have no, one, two, or three operands.

\Y



Chapter Two Addressing Data Memory

1. Three-Operand Instruction: In instruction that have three operands, one

of the operand specifies the destination as an address where the result is to
be saved. The other two operands specify the source either as addresses of

memory location or constants.
EX: A=B+C
ADD destination, sourcel, source2

ADD A,B,C

EX: Y=(X+D)* (N+1)
ADD T1, X,
D ADD T2, N, 1

Mul Y, T1, T2

2.Two operand instruction :In this type both operands specify sources. The

first operand also specifies the destination address after the result is to be saved.
The first operand must be an address in memory, but the second may be an

address or a constant.

ADD destination, source
EX: A=B+C
MOV A, B

ADD A, C

VYW



Chapter Two Addressing Data Memory

EX: Y=(X+D)* (N+1)
MOV T1, X
ADD T1, D
MOV Y, N
ADDY, 1

MULY, T1

3. One Operand instruction: Some computer have only one general purpose

register, usually called on Acc. It is implied as one of the source operands and
the destination operand in memory instruction the other source operand is

specified in the instruction as location in memory.

ADD source
LDA source; copy value from memory to ACC.

STA destination; copy value from Acc into memory.

EX: A=B+C EX: Y=(X+D)* (N+1)
LDA B LDA X
ADD C ADD D
STA A STA T1
LDAN
ADD 1
MUL T1

STAY

V¢



Chapter Two Addressing Data Memory

4. Zero Operand instruction: Some computers have arithmetic instruction in

which all operands are implied, these zero operand instruction use a stack, a
stack is a list structure in which all insertion and deletion occur at one end, the
element on a stack may be removed only in the reverse of the order in which
they were entered. The process of inserting an item is called Pushing, removing
an item is called Popping.

Computers that use Zero operand instruction for arithmetic operations also use

one operand PUSH and POP instruction to copy value between memory and

the stack.

PUSH source; Push the value of the memory operand onto the Top of the stack.

POP_destination; POP value from the Top of the stack and copy it into the

memory operand.

EX: A=B+C

PUSH B

PUSHC Pop the two value of

the stack, add them,
ADD; and then push the sum

back into the stack
POP A

\o



Chapter Two Addressing Data Memory

EX: Y=(X+D)* (N+1)
PUSH X
PUSHD
ADD

PUSHN

PUSH 1

ADD

MUL

POPY

Assembly Language Instruction

Assembly Language Instruction Assembly language instructions are
provided to describe each of the basic operations that can be performed by a

microprocessor. They are written using alphanumeric symbols instead of the

Os and 1s of the microprocessor's machine code. Program written in assembly

language are called source code. An assembly language description of this

instruction is
ADD AX, BX

In tins example, the contents of BX and AX are added together and their

sum is put in AX. Therefore, BX is considered to be the source operand and

AX the destination operand.

Here is another example of an assembly language statement:

LOOP: MOV AX, BX; COPY BXINTO AX

\1



Chapter Two Addressing Data Memory

This instruction statement starts with the word LOOP. It is an address
identifier for the instruction MOV AX, BX. This type of identifier is called a
label or tag. The instruction is followed by "COPY BX INTO AX." This part of
the statement is called a_comment. Thus a general format for writing and

assembly language statement is:

LABEL: INSTRUCTION ; COMMENT

\V



